Отличная квантовая механика. Учебное пособие и Решения

Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

Предисловие

Почему я написал эту книгу?

Впервые строгое определение квантовой механики (КМ) предложили Вернер Гейзенберг и Эрвин Шрёдингер почти век назад. С тех пор эта область науки претерпела громадные изменения. Направленная изначально на объяснение атомных спектров, сегодня квантовая механика является одной из основ почти всех разделов физики. Соответственно, КМ — неотъемлемая часть программы обучения любого студента-физика: какую бы специализацию ни избрали выпускники после окончания вуза, квантовая механика им почти наверняка потребуется в дальнейшей работе.

В то же время методы обучения студентов квантовой механике с годами почти не меняются. Мы начинаем с понятия волновой функции и пишем сначала стационарное, а затем временнóе уравнение Шрёдингера в координатном представлении. Мы определяем энергетические спектры и соответствующие им волновые функции в простых потенциальных ямах и рассматриваем эволюцию волновых пакетов, связанную с потенциальными барьерами. Наконец, мы вводим оператор момента импульса и вычисляем спектр атома водорода. Последние три четверти века именно так, с небольшими вариациями, выглядела программа первого семестра вузовского курса квантовой механики.

У этой традиции множество положительных сторон. Она работает с физической системой, с которой студент уже разобрался в курсе классической физики и которую ему нетрудно себе представить. Она позволяет увидеть различия между поведением классической и квантовой частицы и привлекает внимание к некоторым фундаментальным явлениям, характерным для квантового мира: туннелированию, квантованию и принципу неопределенности. Она снабжает студента инструментами для решения экспериментально значимых задач, с которыми невозможно справиться классическими методами: рассчитав в аудитории спектр водорода, студент отправляется в лабораторию и измеряет его!

Однако такой подход неидеален. Он дает студенту алгоритм для анализа конкретной физической системы, но не раскрывает внутреннего устройства квантовой физики и ее концептуальной логики. Мы знакомим студентов с многочисленными фактами и преподаем вычислительные подходы, связанные с волновыми функциями, операторами и измерениями, но не выстраиваем жесткой логической связи между ними и не объясняем, какие из этих фактов являются постулатами, а какие — их следствиями и в какой именно логической последовательности эти следствия выводятся.

В результате студент — по крайней мере думающий студент — основательно запутывается. Почему достаточно всего лишь поставить над буквами крышечки, чтобы превратить классическую формулу в квантовую? Почему действие оператора импульса на волновую функцию эквивалентно взятию производной? Почему мы никогда не встречаем собственных состояний импульса (и кошек Шрёдингера) в практической реальности? Почему атомы, которые мы наблюдаем, переходят между энергетическими собственными состояниями, а не какими-нибудь другими? Как проективное измерение связано с измерением наблюдаемого оператора? Почему одни состояния описываются волновыми функциями, а другие — столбцами чисел? Если все состояния имеют норму 1, то как мы нормируем волны де Бройля? Если наблюдаемые представляют собой матрицы, то как выглядит матрица импульса?

На вершине всего этого — самый подлый вопрос. Если рассматривать квантовую физику как более общую теорию, чем физика классическая, то почему нужно обращаться к классическим представлениям, чтобы разобраться в концепции измерения? Почему это самое измерение, в отличие от всех прочих физических процессов, не описывается унитарной эволюцией? Если квантовые системы действительно в какой-то момент измерения становятся классическими, то в какой же именно момент это происходит?

Основополагающий образ мышления, который мы стараемся привить нашим студентам за годы обучения физике, можно сформулировать так: «Подвергай все сомнению!» В курсах квантовой физики наше послание студентам звучит, кажется, с точностью до наоборот: «Заткнись и считай!»[1]

Поскольку я тоже когда-то был студентом и изучал квантовую механику, то со временем нашел ответы на эти вопросы, но во многих случаях это произошло через много лет после получения ученой степени. Когда же я пытался задавать подобные вопросы, будучи студентом, вокруг не было никого, кто мог бы не то что ответить мне на них, но хотя бы помочь правильно сформулировать.

Моя задача при написании этой книги состояла в том, чтобы изменить сложившуюся ситуацию. Я попытался выстроить ясную логическую структуру, в которой осталось бы как можно меньше дыр, которая позволила бы читателю по логической цепочке отследить любое заявление назад, до самых основ… Которая не оставила бы вопросов без ответов.

Итак, в определенном смысле я написал эту книгу для себя. Но не для сегодняшнего себя, а для того, каким я был в 18 лет. Такую книгу, которую я счастлив был бы на третьем курсе иметь в своей библиотеке и которая избавила бы меня от многолетних мучительных поисков истины.

Естественно спросить: «Насколько реалистична такая цель? Некоторые из поставленных выше вопросов представляются достаточно сложными. Может быть, без научной степени в них и не разобраться?»

Я дам двойной ответ. Во-первых, с педагогической точки зрения: механика с ее гильбертовым пространством бесконечной размерности едва ли оптимальна для иллюстрации квантовых принципов. Во многих приведенных выше вопросах можно разобраться, если использовать вместо механической более простую физическую систему; чуть позже я расскажу об этом подробнее. Во-вторых, бóльшую часть нестыковок и парадоксов вполне реально устранить, если правильно ввести понятие запутанности. Это понятие лежит в основе двух важных взаимосвязанных концепций: измерения фон Неймана и декогеренции. Первая из них обеспечивает способ избежать превращения измерения в некое исключительное явление в мире квантовой физики и таким образом устраняет логическую бутылку Клейна, характерную для копенгагенской интерпретации. Вторая описывает происходящие естественным образом «самопроизвольные» измерения, благодаря которым квантовый мир предстает перед макроскопическим и наблюдателями вроде нас в том виде, который мы знаем под именем «классическая физика».

Эти концепции не слишком сложны. Математически они намного проще многих элементов традиционного квантового курса, таких как уже упоминавшийся атом водорода или теория рассеяния. Главная трудность в понимании запутанности — не недостаток у студента необходимых математических навыков; она связана скорее с его воображением. Чтобы стать хорошим физиком, необходимо эту способность у себя развить; как говорил Эйнштейн, воображение на самом деле важнее знаний.

Квантовая механика или квантовая оптика?

Название нашей дисциплины — квантовая механика — подразумевает, что мы изучаем применение квантовых принципов к законам движения. На самом же деле рамки квантовой теории не ограничены механикой; она применима во всех областях физики. Если наша цель состоит в том, чтобы изучить общие принципы квантовой физики, то разумно ли выбирать именно механику в качестве физической системы для иллюстрации этих принципов?

Если мы задумаемся над этим вопросом всерьез, то вынуждены будем дать отрицательный ответ. Использование механики — в основном дань традиции, поскольку именно в механике исторически имело место первое успешное применение квантовых принципов в их современной форме. Но если говорить об обучении, то объяснение базовых квантовых принципов на примере механики — весьма неудачный подход. Гильбертово пространство, связанное с этой системой, имеет бесконечную размерность; более того, базис имеет мощность континуума. Студенту приходится иметь дело с незнакомым, чрезвычайно сложным и не всегда строгим математическим аппаратом, включающим в себя обобщенные функции, преобразование Фурье и функциональный анализ. В результате вместо того, чтобы сосредоточить усилия студентов на понимании физических концепций, мы заставляем их сражаться с математикой, а это зачастую ведет к путанице средств и целей. Трудно ожидать от подобного опыта сколько-нибудь глубокого понимания. Студент попросту не увидит за деревьями леса.

Если мы поставим перед собой выбор физической системы для иллюстрирования квантовой физики, нам следует взять ту, у которой гильбертово пространство обладает наименьшей нетривиальной размерностью, а именно — равной двум. Имеется множество таких систем, которые в настоящее время изучаются в контексте квантовых информационных технологий в качестве квантовых бит. Среди подобных систем выделяется одна как наиболее тщательно исследованная и интуитивно понятная: поляризация фотона. Как правило, студент, приступающий к изучению квантовой физики, успел уже освоить оптическую волновую поляризацию. Векторы поляризации Джонса напрямую транслируются в векторы состояния фотонной поляризации, а матрицы, описывающие трансформацию этих векторов различными волновыми пластинками, превращаются в операторы. Принимая во внимание дискретную природу фотона, несложно обосновать постулат квантового измерения из классической картины измерения поляризации. Таким образом, основные квантовые принципы выводятся из классической поляризационной оптики (и студенческого лабораторного опыта обращения с ней) самым простым и естественным образом.

Фотонная поляризация оказывается полезной и позже, когда мы переходим к изучению запутанности. Огромное количество экспериментов по проверке принципиальных моментов в квантовой информатике было проделано с использованием именно данного объекта в качестве носителя квантового бита. Некоторые из этих экспериментов — в частности, по квантовой криптографии, телепортации и нелокальности — относятся непосредственно к концепциям, описанным в книге. Иллюстрируя теоретический материал данными экспериментов из актуальнейших на сегодняшний день исследовательских тем, эта книга сразу, с самого начала, вводит студентов в самое сердце квантовой физики. А что может придать изучению академической дисциплины больший интерес, чем свежие результаты из исследовательских лабораторий?

Раз уж мы заговорили о лабораториях, замечу, что опыт студентов не должен ограничиваться чтением материалов об экспериментах, проведенных кем-то другим. Огромное преимущество поляризационного кубита как иллюстрирующей системы состоит в том, что он позволяет усилить курс лабораторным компонентом. Почти весь материал главы 1 иллюстрируется классическим экспериментом с поляризацией, для которого требуются лазер, несколько поляризационных пластинок, поляризующий светоделитель и два детектора. Материал по запутанности можно подать наглядно при помощи серии лабораторных работ по удаленному приготовлению состояния, однофотонной интерференции и нелокальности Белла. Организовать такие эксперименты силами среднестатистической кафедры физики сложнее, но вполне по силам, о чем свидетельствует опыт множества колледжей по всему миру, в том числе и моего родного Университета Калгари. Дополнительные подробности на предмет возможных образовательных лабораторных работ можно найти на сайте книги.

Связь между квантовой физикой и квантовой оптикой в этой книге не ограничена использованием фотона для иллюстрации основных концепций соответствующей дисциплины. Она проявляется также в многочисленных примерах из оптики, обильно рассыпанных по всей книге, и в выборе предметов для более углубленного изучения (подробное описание гармонического осциллятора, представления Гейзенберга, сжатия, матриц плотности, двухуровневых систем, квантовой томографии). Эти предметы будут особенно полезны тем, кто интересуется квантовой информатикой в целом и квантовой оптикой в частности.

Структура курса

Книга содержит материал, который можно преподать студентам в рамках двухсеместрового курса квантовой механики. В главе 1 вводятся главные принципы и постулаты КМ, которые иллюстрируются кубитом поляризации фотона. Читатель, возможно, захочет изучать эту главу параллельно с приложением A, в котором разобраны основы линейной алгебры, необходимые в КМ, как показано в таблице ниже.

Глава 2 целиком посвящена запутанности, ее следствиям и приложениям. Сначала я ввожу пространство тензорных произведений математически, затем рассказываю о частичных квантовых измерениях, удаленном приготовлении состояния и парадоксе нелокальности (в формах Белла и Гринбергера — Хорна — Цайлингера), иллюстрируя теорию экспериментами с запутанными фотонами. Нелокальность, пожалуй, главный парадокс квантовой механики, и после него естественно обсудить механизм квантовых измерений, их естественный аналог (декогеренцию) и интерпретации квантовой механики. В разд. 2.4 мы выясняем, когда и почему квантовая система становится классической в ходе измерения и почему мы не встречаем гуляющих по городу кошек Шрёдингера. После этого я весьма подробно рассматриваю приложения запутанности, такие как квантовые вычисления, телепортация и повторители. При преподавании этого материала имеет смысл предложить двум или трем студентам сделать презентации по свежим исследованиям в данной области.

Главы 3 и 4 представляют собой в некоторой степени реверанс в сторону «общепринятой» вузовской квантовой механики частицы в потенциальном поле. Там нам придется иметь дело с гильбертовым пространством, базисом которого является континуум, поэтому глава 3 сопровождается кратким курсом по дельта-функциям Дирака и преобразованию Фурье (приложение Г). Я надеюсь, что после того, как студенты уже усвоят базовые положения КМ, они смогут воспринимать технические особенности гильбертовых пространств с непрерывными переменными, не теряя из виду физические принципы. Вводя системы с непрерывными переменными я объясню, как и почему при этом изменяются правила нормирования. Затем я приведу обычные примеры потенциальных ям, потенциальных барьеров, туннелирования и гармонического осциллятора. На этом, как мне представляется, должна завершиться программа первого семестра курса.

Далее в главе 3 объясняется представление Гейзенберга и то, как оно согласуется с представлением Шрёдингера; все это иллюстрируется многочисленными примерами, связанными с физикой гармонического осциллятора (и продемонстрированными в квантово-оптических экспериментах): смещением, фазовым сдвигом, а также одно- и двумодовым сжатием. С помощью последнего я показываю первоначальный вариант парадокса Эйнштейна — Подольского — Розена.

В главе 4 я рассматриваю трехмерное геометрическое пространство (как тензорное произведение трех одномерных пространств) и рассказываю про момент импульса, спин и, наконец, атом водорода. Затем обсуждается поведение спина в магнитном поле и магнитный резонанс, а также дается понятие о спиновом эхе и спектроскопии Рамзея.

В главе 5 мы вновь обращаемся к фундаментальным принципам квантовой механики, представив их на этот раз на языке операторов плотности, который имеет важнейшее значение во всех приложениях квантовой физики. Чтобы продемонстрировать полезность этого языка, я даю с его помощью строгое описание декогеренции и релаксации при ядерном магнитном резонансе. Затем я затрагиваю важные для современной квантовой информатики темы: обобщенные измерения, а также томографию квантового состояния, процесса и детектора.

Как пользоваться этой книгой (послание студенту)

Бóльшую часть своей сознательной жизни я был вовлечен в процесс образования — сначала как школьник и студент, а затем как преподаватель и профессор. Этот опыт помог мне понять простую истину: почти невозможно изучить что бы то ни было, пассивно слушая лектора или читая книгу. Обучение требует активного участия студента. В случае теоретической физики это означает, что ты должен выводить формулы сам, а не наблюдать, как это проделывает кто-то другой на доске или в учебнике.

Помня об этом, я попытался написать этот текст, руководствуясь сократовским принципом: ученик приходит к истине, отвечая на вопросы учителя. Я лично познакомился с данным методом в старших классах. Мне повезло учиться в одной из лучших школ России с естественно-научным уклоном, где практиковался уникальный подход к обучению математике. Вместо объяснений нам давали листочки, состоявшие исключительно из определений, аксиом и задач. Справившись с задачами, мы обсуждали наше решение с преподавателем, который должен был убедиться, что мы верно поняли предложенный материал.

Эта книга устроена аналогичным образом. Вы наверняка заметите, что в ней необычно много упражнений. Некоторые из них представляют собой концептуальные теоремы; другие вставлены просто для практики; многие выступают в обеих ролях. Идея в том, что, выполнив их одно за другим, вы сами построите квантовую механику — с моей минимальной помощью. Соответственно, пропускать упражнения не рекомендуется. Пропуск упражнения равнозначен пропуску страницы-другой в традиционном учебнике: вы не сможете понять последующий материал.

Почти все упражнения имеют решения, которые приведены на сайте книги[2]. Однако прошу не заглядывать туда до тех пор, пока вы хотя бы не попытаетесь выполнить упражнение самостоятельно. Даже при условии, что вам не удастся самому получить результат, вы поймете, на каком этапе ваше решение застопорилось, — и тогда готовое решение поможет вам, дав ответ на заранее сформулированный вопрос. Таким образом, семя упадет на уже удобренную почву.

Однако, даже если у вас есть собственное решение, я рекомендую вам все же заглянуть в мое. Таким образом вы получите представление об ошибках, которые вы (или я), возможно, сделали, или, скажем, об альтернативном подходе к решению той же задачи.

Упражнения, которые я считаю более сложными, помечены звездочкой*. Здесь есть тонкость. Дело в том, что многие из них содержат утверждения, важные для изучения последующего материала. Поэтому, хотя допустимо отложить выполнение этих упражнений (или подробный разбор их решений) на потом, вам следует по крайней мере разобраться в утверждениях, которые в них содержатся.

Некоторые из упражнений (они помечены символом параграфа §) даны без решений. Как правило, это происходит в тех случаях, когда я считаю задачу относительно простой; тогда я обычно привожу ответ сразу после упражнения. Очень редко встречаются упражнения, помеченные и звездочкой, и символом параграфа. Такие «упражнения», по сути, представляют собой независимые исследовательские проекты, которыми вам, возможно, захочется заняться в свободное время.

Какими знаниями вам, по моему мнению, следует уже обладать, прежде чем открывать эту книгу?

ПРЕДИСЛОВИЕ К РУССКОязычному ИЗДАНИЮ

Название этой книги — «Отличная квантовая механика» — отражает не только ее качество и даже не оценку, которую вы, возможно, получите на экзамене, изучив ее. Главное, что книга отличается от тех учебников квантовой физики, к которым мы привыкли. Вместо разбора волновых функций и потенциальных ям (с чего стартуют все курсы, начиная от Ландау и Лифшица) в этой книге речь пойдет о концептуально более простых и в то же время более сутевых и интересных вещах: пространстве состояний, сущности измерений, запутанности и нелокальности. Об этом я подробно рассказываю выше в предисловии к англоязычному изданию. Здесь же я хочу поговорить о другом.

«Дай бог побольше разных стран, не потеряв своей, однако». По мерке этих слов Евгения Евтушенко, я счастливый человек. Покинув Родину в двадцать лет, я обрел ее вновь в сорок, когда начал регулярно приезжать в Россию по делам, связанным с созданием Российского квантового центра и последующей научной работой в нем. Это возвращение подарило мне неугасающий душевный подъем, новую ступень для личностного роста и новый плацдарм для научных идей. Помимо этого, я смог увидеть и критически оценить — с высоты собственного преподавательского опыта — разницу в методах обучения физике в России и за рубежом.

У российско-советской школы немало заслуг перед мировой культурой — как в науке и технике, так и «в области балета». Одним из ее важнейших преимуществ является, как мне кажется, глубина рассмотрения материала, желание дойти до самой сути явления. Но у этой медали есть и оборотная сторона. Очевидно, что любая учеба — тяжелый, мучительный труд. No pain, no gain. Однако в западной системе образования имеет место сознательное стремление помочь студенту в этом труде, минимизировать его мучения посредством множества примеров и иллюстраций (и порой, к сожалению, излишне поверхностного изложения). Вероятно, это следствие рыночной экономики в сфере образовательных услуг: если студенту станет слишком трудно, он просто купит другой учебник или уйдет в другой университет. В советской же школе подобные стремления со стороны преподавателей почти полностью отсутствуют. Более того, зачастую имеется подспудное убеждение, что чем болезненнее студенту дается гранит науки, тем ему больше пользы, тем лучше он выучится. Это хорошо показано в фильме «Легенда № 17» на примере хоккея — но и в физике за примером далеко ходить не надо: достаточно открыть того же Ландафшица.

В своей книге я попытался взять лучшее из обеих школ. С одной стороны — постарался дойти до сути, дать ответы на все возможные вопросы, как бы сложны они ни были. С другой — «разжевать» материал, проиллюстрировать его в достаточной степени, сделать как можно меньше количество мест, где можно застопориться. Удалось ли мне это — судить вам.

Я хотел бы поблагодарить творцов русского перевода этой книги. Это в первую очередь директор по развитию Российского квантового центра Анна Шангина и генеральный директор Центра Руслан Юнусов, которые инициировали издание русской версии и его финансирование. Также благодарю руководителя проекта со стороны издательства Анну Тарасову — не только за пот и нервы, с которыми связана подготовка к печати любой книги, но и за внимание к моим авторским прихотям. Огромное спасибо редактору Анастасии Ростоцкой, проведшей со мной много вечеров на телефоне для совместного оттачивания формулировок. Удивительным образом Анастасия, не будучи профессиональным физиком, сумела найти ряд опечаток, которые я допустил в формулах (!) в английском оригинале. В чтении корректур решений к упражнениям оказали неоценимую помощь мои студенты и аспиранты: Дима Белобородов, Артем Иванов, Арсен Кужамуратов, Катя Сажина, Демид Сычев, Егор Тиунов, Саша Уланов и Митя Чермошенцев.

Несмотря на всю эту помощь, основная ответственность за опечатки и ошибки, которые могли остаться в переводе, лежит на мне. Я старался максимально тщательно вычитать его текст и гранки книги, но почти наверняка что-то упустил. Прошу сообщать мне о замеченных проблемах по электронной почте; адрес легко найти в интернете.

Вы без сомнения заметите, что всем главам предшествуют эпиграфы. Для них я использовал строки песен Михаила Щербакова. С его поэзией я познакомился больше двадцати лет назад и во многом благодаря ему сохранил живую связь с русским языком, которая совсем не помешала мне при подготовке этого текста. Включая эти эпиграфы в книгу, я хочу поделиться с вами своей любовью к творчеству этого автора, которая в моей душе не менее сильна, чем любовь к квантáм, пусть и безответна — ибо в квантовую физику я могу внести хотя бы какой-то вклад.

Оксфорд,

27 июня 2019 г.

Предисловие Российского Квантового Центра

Как много людей сталкивается в своей повседневной жизни со словосочетаниями «квантовая физика» или «квантовая механика». А сколько из них действительно понимают всю глубину, которая скрывается за этими понятиями? Думаю, ответ очевиден: немного (по крайней мере, меньше, чем хотелось бы). Квантовая механика является одной из самых сложных областей физики, которую приходится изучать студентам в технических вузах. В дополнение к далеко не самому простому математическому аппарату сложность этой дисциплины заключается в высокой степени абстракции рассматриваемых в ее рамках явлений. К тому же постулаты квантовой механики зачастую противоречат «здравому смыслу», что также не способствует быстрому освоению предмета. В результате существенная часть материала часто остается непонятой студентами, что значительно уменьшает их желание заниматься квантовой физикой в дальнейшем. В своем учебнике «Отличная квантовая механика» наш коллега и замечательный ученый Александр Львовский сделал вполне успешную попытку исправить сложившуюся ситуацию и, не теряя глубины изложения, объяснил многие сложные вещи простым языком, тем самым делая обучение живее и интереснее. На мой взгляд, Александр проделал титаническую работу по переосмыслению и структурированию одной из самых тяжелых областей физики, и я надеюсь, что эта книга вдохновит еще не одно поколение студентов на изучение столь сложной, многогранной, но при этом невероятно красивой науки — квантовой механики.

Руслан Юнусов,

генеральный директор Российского квантового центра

Благодарности

Мне потребовалось 13 лет, чтобы написать эту книгу, — я начал ее в январе 2005 г., а закончил в декабре 2017 г. Дату окончания работы над книгой запоминают часто, поскольку это, как правило, срок, заданный издателем (в моем случае срок сдачи переносился много раз на протяжении нескольких лет). Причина того, что я помню также дату начала, вот в чем: она соответствует семестру, когда я приступил к преподаванию вводного курса квантовой механики в Университете Калгари. Я тогда только-только пополнил ряды профессоров университета и, строго говоря, еще не должен был заниматься преподаванием. Однако, когда заведующий кафедрой Барт Хикс однажды подошел ко мне и мило спросил «Алекс, не хотели бы вы начать преподавание чуть раньше? Я слышал, ваши интересы связаны с квантáми, а у нас как раз есть место в расписании», я (наивный, романтично настроенный профессор-новичок) ответил «да». Вот тогда и появился первый рукописный конспект.

Но подлинная история плода начинается с корней. А поскольку эта книга во многом посвящена именно корням, имеет смысл следовать данному принципу и в этом разделе. Я могу проследить корни до 1962 г., когда мои родители Исай и Татьяна всего за несколько месяцев до того, как познакомились друг с другом в Москве, посмотрели «Девять дней одного года» — советский фильм о физиках, ставший в то время культовым. (Кстати говоря, вам тоже стоит посмотреть его, если будет возможность. Его несложно найти в онлайн-варианте с английскими субтитрами; он наверняка доставит вам удовольствие. И, между прочим, этот фильм проповедует вполне правильные ценности.) Культовость «Девяти дней…» быстро поблекла, но не для моих родителей. Так что моя будущая профессия была выбрана за 11 лет до моего рождения. Единственное, о чем не могли договориться родители, так это стоит ли мне стать академиком (в Советском Союзе это было аналогично статусу члена Королевского общества) или лауреатом Нобелевской премии. Мой дед примирил их, указав, что одно не мешает другому.

К счастью, мои природные наклонности не противоречили амбициям родителей — если не по величине, то по крайней мере по направлению. (Я иногда спрашиваю себя, кем мог бы стать, если бы был воспитан в другой семье. Мне кажется, либо автомехаником, либо программистом. Так что физик-экспериментатор представляется неплохим компромиссом.) Поэтому через несколько лет я оказался учащимся знаменитой московской школы № 57 (у школ в Советском Союзе были номера, а не названия) с углубленным преподаванием математики и физики. Именно там я на себе испытал сократовский принцип преподавания, о котором говорил в предисловии и на котором основана моя книга. Метод этот придумал московский учитель Николай Николаевич Константинов, но в нашем классе преподавал — и, соответственно, познакомил меня с данным методом — Борис Михайлович Давидович. Сюжет первых двух разделов приложения A и некоторые упражнения оттуда взяты прямо из моих школьных архивов.

Затем институт. Профессором, который открыл для меня квантовую физику и увлек ею, был Юрий Михайлович Белоусов. Он искусно сочетал строгость «старой школы» Льва Ландау и Евгения Лифшица с ярким, глубоким и страстным стилем преподавания: «Что такое состояние? Неопределяемое понятие! Как в геометрии: вы же не определяете, что такое точка или прямая, правда? Так же и с состоянием. Каково ваше состояние? Вы пьяный? Трезвый? Усталый? Вот вам состояние. Множество состояний называется пространством состояний. Опять же — почему нет? Но затем мы говорим, что это пространство линейно. А вот это уже претензия…»

Тем не менее, как тоже говорилось выше, не все мои вопросы получили ответы (и даже были правильно заданы) в институте, и мне пришлось долго искать их самостоятельно, уже после выпуска. В этом поиске меня поддерживали многие блестящие ученые. Назову лишь некоторых: Ален Аспе, Конрад Банашек, Мауро дАриано, Хауке Хансен, Петер Марцлин, Филипп Гранжье, Миклош Гуиласси, Пол Квят, Миша Лукин, Юджин Ползик, Майк Реймер, Барри Сандерс, Кристоф Симон, Эфраим Стейнберг, Иан Уолмсли, Син Вэй и Антон Цайлингер. Два имени я должен упомянуть отдельно: моего институтского научного руководителя Анатолия Викторовича Масалова, который познакомил меня с исследовательской деятельностью, и научного руководителя моей диссертации Свена Хартмана, или мистера Фотонное Эхо. Свен научил меня не только многому из физики, но и искусству писать научные тексты. Если в этой книге есть какой-то стиль, то благодаря ему.

Хотя мне трудно назвать одного-единственного человека, который оказал бы наибольшее влияние на формирование моих представлений о квантовой физике, я могу точно назвать период своей жизни, когда я достиг наибольшего прогресса. Я тогда работал постдоком в Университете Констанца, в институте, который возглавлял доктор Юрген Млынек. Этот институт в те годы был настоящей Меккой для квантовых физиков, там бывали лучшие умы, занимающиеся этой сферой науки. Иногда мне удавалось урвать несколько минут из их плотного расписания, чтобы обсудить с ними волновавшие меня вопросы, включая фундаментальные для квантовой физики (если только мне удавалось набраться храбрости и преодолеть страх показаться глупым или невежественным).

Теперь я хотел бы вновь вернуться к тому моменту, когда приступил к преподаванию Квантовой Механики I в Калгари и составил свои первые заметки. Впоследствии они переписывались и дополнялись десятки раз. Возможно, поворотным пунктом в превращении заметок в книгу стало добавление в них решений к упражнениям. Первоначально их там не было; я просто излагал решения устно на лекциях (я до сих пор не понимаю, как те студенты умудрялись сдавать экзамены). Но затем у меня состоялось два важных разговора. Во-первых, я поговорил с профессором Массачусетского технологического института Джеффом Шапиро, научившим меня многому в квантовой оптике во время наших (увы, кратких) встреч. Я сообщил Джеффу об идее превратить свои лекционные записи в книгу и о сократовском методе. Джефф серьезно посмотрел на меня и спросил: «Но ведь у задач будут и решения… Правда?» А во-вторых, почти чудесным образом, примерно в то же время, ко мне подошли два моих студента, Джефф Кэмпбелл и Даллас Хоффман. «С решениями ваши заметки станут намного лучше. Мы подумали, может быть, нам стоило бы написать некоторые из них?» И они сделали это — многие решения для упражнений из глав 1, 2 и приложения A принадлежат им, и я очень благодарен этим ребятам.

На самом деле поддержка студентов была чрезвычайно важна на всех этапах создания этого труда. Начиная с 2005 г. я преподавал Квантовую Механику I шесть раз примерно 200 студентам, и многие из них внесли в книгу важный вклад. Вот их имена: Рассел Бейт, Данте Бенчивенга, Трэвис Брэннан, Артур Бери-Джоунз, Авик Чандра, Хосе да Коста, Иш Дханд, Стефан Донса, Марк Жирар, Крис Хили, Катаня Кунтц, Кимберли Оуэн, Адарш Прасад, Мэтью Ричардс, Стивен Роговски, Мэттью Таунли-Смит, Раджу Валивартхи. Помощь студентов состояла не только в построении решений; они постоянно искали ошибки и задавали многочисленные вопросы, которые позволяли мне увидеть, какие части текста недостаточно понятны и требуют пояснений. Опять же, я не смогу назвать всех, кто мне помогал, поэтому должен попросить прощения у тех, кого не упомянул.

Поскольку вдохновением для создания данного метода обучения во многом послужил мой собственный опыт в старшей школе, я всегда хотел опробовать его в той же обстановке. Мне это удалось в 2013 г., когда я взял академический отпуск в своем университете, чтобы помочь в создании Российского квантового центра в Москве. Я организовал кружок по квантовой физике для московских школьников. Вместе с командой преподавателей-энтузиастов во главе с Алексеем Федоровым мы еженедельно встречались с учащимися, чтобы выслушать, как они решили задачи из конспекта (решений мы им не давали), исправить их ошибки, объяснить тонкости и — что не менее важно — обсудить сам конспект. Отзывы, полученные в ходе этих дискуссий, сыграли важную роль в формировании настоящего текста, а несколько участников кружка, включая Алексея, теперь стали профессиональными учеными, занимающимися исследованиями квантовых технологий на постоянной основе.

Я хотел бы поблагодарить Стефана Лайла за тщательную вычитку книги и множество разумных замечаний.

Но самую свою горячую благодарность я выражаю своей жене Бхавии Равал. Сейчас, когда я пишу эти строки, она в пути — едет забирать нашу дочку Софи от дедушки. Это лишь одна из многих сотен ситуаций, в которых мне следовало бы, по идее, быть с семьей, а не прятаться за монитором, выводя на экране странные закорючки. Но теперь даже бесконечное терпение Бхавии, кажется, истощается. Вчера мы по ее совету посмотрели фильм «Париж подождет», в котором жена одного парня, который слишком много работает, позволяет соблазнить себя его коллеге-французу. Дорогая, намек понят. Париж больше не может ждать. И это последнее предложение, которое я добавляю в книгу!

Калгари, 10 декабря 2017 г.

Учебное пособие

Глава 1

Квантовые постулаты

А дальше — стоп.

А дальше, извини, стена.

1.1. Предмет квантовой механики

Пожалуй, первое, что нужно понять о квантовой механике, — это то, что к механике она имеет такое же отношение, как, скажем, к электродинамике, оптике, физике конденсированного состояния или высоких энергий. Квантовая механика, по существу, не описывает какой-то конкретный класс физических явлений; скорее, она обеспечивает универсальную теоретическую основу, которую можно использовать во всех областях физики, — так операционная система компьютера обеспечивает базу, на которой могут исполняться другие приложения. Употребление термина «квантовая механика» сложилось исторически, поскольку впервые квантовую основу удалось успешно применить при исследовании механического движения электронов в атоме. Более удачными терминами были бы «квантовая физика» или «квантовая теория».

Так что предмет квантовой механики (квантовой физики) глобален: она охватывает все физические явления во Вселенной. Однако применять квантовый подход имеет смысл только в случае очень маленьких (микроскопических) физических систем. Поведение более крупных систем очень хорошо аппроксимируется законами классической физики, намного более простыми и интуитивно понятными, по крайней мере для существ, эволюция которых проходила именно на этом масштабе величин.

Проиллюстрируем это примером. Вы, вероятно, слышали о принципе неопределенности Гейзенберга: ∆p∆x ≳ ℏ/2. То есть координату и импульс частицы невозможно измерить точно и одновременно: произведение неопределенностей составляет по крайней мере ℏ/2 ≈ 5 × 10−35 кг∙м2/с. Чтобы макроскопический объект с массой порядка килограмма достиг предела неопределенности, потребовалось бы измерить и координату объекта с точностью порядка ~ 10–17 м и скорость с точностью ~ 10–17 м/с. Это, разумеется, нереально, так что для всех практических целей мы можем просто забыть о принципе неопределенности и рассматривать координату и импульс как точные величины. Но для электрона массой ~ 10–30 кг произведение неопределенностей координаты и скорости составит около 5 × 10–5 м2/с, что вполне укладывается в экспериментально доступную точность измерений и должно приниматься во внимание.

Таким образом, предсказания квантовой теории отличаются от классических только для относительно простых, микроскопических объектов. Это объясняет, почему квантовая механика была открыта лишь в начале XX в. До того времени мы (сами представляющие собой макроскопические тела) имели дело исключительно с макроскопическими предметами. Но стоило нам изобрести инструменты, позволяющие достаточно глубоко проникать в микроскопический мир, как сразу же проявились квантовые явления.

Это пример принципа соответствия — философской максимы, согласно которой любая новая, более современная теория должна воспроизводить результаты более старых, устоявшихся теорий в тех областях, где эти теории были проверены. Вот еще один пример для иллюстрации этого принципа. Пока мы имели дело только с объектами, движущимися намного медленнее света, для описания окружающего нас мира достаточно было ньютоновой механики. Но стоило нам получить возможность наблюдать тела, которые движутся быстро (например, Земля вокруг Солнца в эксперименте Майкельсона — Морли), мы начали замечать несоответствия и вынуждены были разработать теорию относительности. Эта теория заметно отличается от ньютоновой механики — но тем не менее согласуется с ней в предельном случае низких скоростей. Было бы неразумно использовать специальную теорию относительности для описания, например, трансмиссии трактора, потому что классическое приближение в данном случае и вполне достаточное, и многократно более простое в применении. Аналогичным образом использование квантовой физики для описания макроскопических явлений в большинстве случаев было бы переусложненным и ненужным.

В классической физике мы имеем дело с величинами: скоростью полета камня 10 м/с, силой протекающего по электрическому контуру тока 0,2 А и т.д. Даже если мы не знаем точного значения какой-то физической величины, мы можем работать над улучшением нашей теории и эксперимента, чтобы предсказать и измерить эту величину со все более высокой точностью. Иными словами, классический мир бесконечно познаваем. В квантовой физике ситуация иная: некоторые знания (например, одновременные значения координаты и импульса) могут быть «священными»: их в принципе невозможно получить. И эту ситуацию уже нельзя описывать в терминах одних только величин. Вместо этого мы должны использовать концепцию квантового состояния физической системы. Как мы увидим, эта концепция содержит в себе границу между знанием, которое можно получить, и знанием, которое получить невозможно. Мы можем узнать точно, в каком состоянии находится система, но каждое состояние связано с фундаментальными ограничениями на точность, с которой физические величины могут быть определены.

Поскольку квантовая механика играет уже упомянутую роль общей основы, мы изучаем ее с известной степенью математической строгости. Я буду…