Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность

Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

Просветительский фонд «Эволюция»

основан в 2015 году сообществом российских просветителей.

Цель фонда — популяризация научного мировоззрения, продвижение здравомыслия и гуманистических ценностей, развитие науки и образования.

Одно из направлений работы фонда — поддержка издания научно-популярных книг.

Каждая книга, выпущенная при содействии фонда «Эволюция», тщательно отбирается серьезными учеными. Критерии отбора — научность содержания, увлекательность формы и значимость для общества.

Фонд сопровождает весь процесс создания книги — от выбора до выхода из печати. Поэтому каждое издание библиотеки фонда — праздник для любителей научно-популярной литературы.

Больше о работе просветительского фонда «Эволюция» можно узнать по адресу

www.evolutionfund.ru

Посвящается Тэрин

Введение

Эта книга посвящена математике. Во всяком случае, таков был изначальный план.

Но сюжет неожиданно вильнул влево. Вскоре я оказался в лабиринте подземных туннелей. Мобильная связь не работала. Когда я вышел на свет, моя книга все еще была о математике, но также и о множестве других вещей. Почему люди покупают лотерейные билеты? Каким образом детская писательница повлияла на исход выборов в Швеции? Каковы отличительные свойства готического романа? Была ли постройка гигантской шарообразной космической станции мудрым шагом со стороны Дарта Вейдера и Галактической Империи?

Это математика для вас. Она соединяет отдаленные уголки жизни, как секретная система труб водопроводчика Марио.

Если вы видите математику иначе, возможно, дело в том, что вы посещали заведение под названием «школа». В таком случае примите мои соболезнования.

Когда я окончил колледж в 2009 году, мне казалось, что я знаю, почему математика не пользуется популярностью: в общем и целом ее дурно преподают. На уроках математики красивое, образное, логическое искусство измельчили в конфетти и велели школьникам собрать оригинал обратно. Невозможная, парализующая задача. Неудивительно, что школьники стонали. Неудивительно, что они терпели поражения. Неудивительно, что взрослые вспоминают о школьных уроках математики с содроганием и чувствуют позывы к рвоте. Решение проблемы казалось мне очевидным: математику необходимо лучше объяснять, да и сами преподаватели должны быть лучше.

Потом я стал учителем. Я был заносчив и неопытен, во мне клокотала гордыня, но первый учебный год преподал мне жестокий урок: пускай я знаю математику, но все еще не знаю, как ее преподавать и что она значит для моих учеников.

Однажды в сентябре у меня спонтанно завязалась неловкая дискуссия с девятиклассниками о том, зачем мы изучаем геометрию. Неужели взрослые пишут двухэтажные доказательства? Неужели инженеры работают без калькуляторов? Неужели при подсчете личных финансов постоянно нужны ромбы? Все традиционные оправдания звучали неубедительно. В конце концов мои девятиклассники пришли к единому мнению: «Мы изучаем математику, чтобы доказать наш ум и трудолюбие вузам и работодателям». Если исходить из этой формулировки, математика сама по себе не имела значения. Решение математических задач превращалось в тяжелую атлетику, накачивание мускулов, бессмысленную демонстрацию интеллектуальной мощи, нудное упражнение ради строчки в резюме. Я был подавлен этим ответом, но школьников он обрадовал, отчего я был подавлен еще больше.

Школьники были правы. Учеба напоминает состязание, игру с нулевой суммой[1], и математика выполняет функцию механизма сортировки. Но школьники не осознавали высший смысл математики, а я не умел им его показать.

Почему математика лежит в основе всего в жизни? Как ей удается выстраивать связи между разрозненными областями: монеты и гены, игральные кости и акции, книги и бейсбол? Причина в том, что математика — это система мышления, а любая проблема в мире решается мышлением.

Я пишу о математике и образовании с 2013 года — иногда для Slate, The Atlantic и Los Angeles Times, но в основном для моего блога «Математика с дурацкими рисунками». Читатели постоянно спрашивают: почему я плохо рисую? Странный вопрос! Если я угощаю гостей сэндвичами, никто не интересуется, почему я не приготовил сногсшибательную курицу под апельсиновым соусом. То же самое с моим «изобразительным искусством». Я мог бы назвать этот блог «Математика с лучшими рисунками, на которые я способен; честное слово, ребята, я стараюсь», смысл остался бы тем же, но это прозвучало бы слишком патетично.

Мой путь художника начался в тот день, когда я нарисовал на доске собачку, чтобы проиллюстрировать решение задачи, и надо мной расхохотались так, как никогда за всю мою карьеру. Моя бездарность насмешила и шокировала школьников, но в конечном итоге они сочли ее по-своему милой. Часто математика похожа на соревнование с высокими ставками; когда безусловный эксперт в этой науке оказывается совершенно бездарен в чем-то другом, это очеловечивает его, а в дальнейшем, возможно, очеловечит и сам предмет, который он ведет. С тех пор самоуничижение стало ключевым элементом моей педагогики; вы не найдете такого совета ни в одной методичке для учителей, но, вы знаете, это работает.

Чаще всего на своих уроках я терплю поражение. Моим ученикам кажется, что математика — затхлый подвал, где туда-сюда шныряют бессмысленные символы. Дети пожимают плечами, изучают хореографию и вальсируют не в такт.

Но в удачные дни они видят далекий проблеск света и осознают, что математика — это не подвал, а потайной подземный лабиринт, соединяющий все, что они знают, и все остальное, что только есть на свете. Школьники бьются над задачами, фантазируют, проводят параллели, рвутся вперед, и постепенно их настигает неуловимое счастье — понимание истины.

Эта книга — не учебник, поэтому я буду пропускать технические детали. (Любители хардкора могут заглянуть в примечания.) На ее страницах вы обнаружите несколько уравнений, но даже самые кошмарные из них — не более чем украшения. Я хочу сосредоточиться на том, что, на мой взгляд, составляет истинное сердце математики, — на концепциях. Каждый раздел этой книги посвящен тому или иному пейзажу, но все они, как сеть подземных туннелей, объединены одной большой идеей. Как законы геометрии ограничивают наши дизайнерские идеи? Как методы вероятности откупоривают нектар вечности? Как крошечные приращения дают квантовые скачки? Как статистика приводит в порядок безумное расползание реальности?

Эта книга вывела меня в диковинные места. Надеюсь, что это произойдет и с вами.

Бен Орлин, октябрь 2017

I

Думать как математик

По правде говоря, математики не делают ничего особенного. Прихлебывают кофе, хмурясь на грифельную доску. Прихлебывают чай, хмурясь на контрольные учеников. Прихлебывают пиво, хмурясь на доказательство, которое записали год назад и в жизни больше не поймут.

Так протекает их жизнь: разнообразные напитки, нахмуренные брови и размышления, прежде всего размышления.

Видите ли, в математике нет физических объектов: нет необходимости вычислять концентрацию химических веществ, ускорять частицы, сотрясать финансовые рынки. Математики просто думают, вот и все. Когда мы проводим вычисления, мы превращаем одну абстракцию в другую. Когда мы выстраиваем доказательства, мы перекидываем логические мостики между взаимосвязанными идеями. Когда мы пишем алгоритмы или компьютерные программы, мы передоверяем электронному мозгу задачи, с которыми не могут справиться наши собственные водянистые мозги, слишком медленные или слишком перегруженные.

Каждый год, проведенный в компании математики, я изучаю новые стили мышления, новые способы использования первоклассного механизма, спрятанного внутри черепа и годного на все случаи жизни. Как освоить игру, покрутив ее правила? Как сохранить мысли на будущее, записав их крючковатыми греческими буквами? Как учиться на своих ошибках, словно это авторитетные профессора? И как не терять твердость духа, когда дракон хаоса наступает на пятки?

В общем, математика — это работа ума.

А как насчет хваленой пользы математики в повседневной жизни? Откуда на горизонте чистой мысли появляются смартфоны, космические корабли и, не к ночи будет помянута, таргетированная реклама? О, терпение, дружище. Всему свое время. Мы должны начать с того, с чего начинается вся математика, то есть с игры…

Глава 1

Жесткие крестики-нолики

Что такое математика?

Однажды на пикнике в Беркли я увидел группу математиков, которые побросали свои летающие тарелки фрисби и сгрудились, чтобы сыграть — вот уж чего никак не ожидал — в крестики-нолики.

Возможно, вы успели убедиться на собственном опыте, что крестики-нолики смертельно скучны (в медицинском смысле слова). Из-за того, что возможностей для хода ничтожно мало, опытные игроки быстро запоминают оптимальную стратегию. Вот как проходят все мои партии:

Если оба игрока хорошо понимают правила, все партии раз за разом проходят вничью — механически, без простора для творческой мысли.

Но на том пикнике в Беркли математики играли в необычные крестики-нолики. На их игровом поле каждая из девяти клеток делилась еще на девять клеточек1:

Когда я присмотрелся, основные правила прояснились:

Но потребовалось чуть больше времени, чтобы понять самое важное правило:

Вы не можете поставить крестик или нолик в клеточке на произвольном мини-поле. Все зависит от предыдущего хода противника. Вы должны играть на том мини-поле, которое соответствует клеточке, где он поставил свой крестик или нолик.

(А от того, где вы поставите свой крестик или нолик, зависит, на каком мини-поле он будет играть дальше.)

Это придает игре стратегический элемент. Вы не можете ставить крестик или нолик где угодно. Вы должны рассчитать, куда ваш ход перенаправит вашего противника и куда его ход перенаправит вас — и так далее, и так далее. (Есть всего одно исключение: если ваш противник перенаправляет вас на поле, которое уже сыграно, поздравляю — вы можете выбрать любое другое.)

В итоге сценарии игры выглядят эксцентрично: игроки легко теряют по два-три крестика или нолика на одной линии. Как будто звезда баскетбола упускает открытую передачу и кидает мяч в толпу. Но в этом безумии есть метод. Игроки думают на несколько ходов вперед, в зависимости от того, что предпринимает противник. Осуществив хитрую атаку на мини-поле, вы остаетесь в дураках на большом поле, и наоборот — это-то и вносит напряжение в процесс игры.

Время от времени я играю в жесткие крестики-нолики с моими учениками2; они наслаждаются стратегией, шансом победить учителя и, что самое существенное, отсутствием тригонометрических функций. Но частенько кто-нибудь из них застенчиво спрашивает: «Ну, мне, конечно, нравится игра, но какое отношение она имеет к математике?»3

Я знаю, как обычные люди воспринимают мою профессию: унылая тирания жестких правил и формульных процедур, где не больше разнообразия, чем, скажем, в заполнении страхового свидетельства или налоговой декларации. Вот пример задачки, которая ассоциируется с математикой:

Эта задачка, вероятно, сможет занять ваше внимание на пару минут, хотя вскоре вы абстрагируетесь от геометрического смысла. Периметр больше не будет означать длину линии, ограничивающей прямоугольник. Он превратится просто-напросто в удвоенную сумму двух чисел. Как и в обычных крестиках-ноликах, все сведется к примитивным вычислениям, не требующим интеллектуального напряжения. Здесь нет места фантазии, нет вызова вашим способностям.

Но математика не ограничивается бухгалтерскими вычислениями, ее потенциал гораздо шире. Математика может быть дерзкой и увлекательной, успех может зависеть от баланса терпеливости и авантюризма. Попробуем переформулировать рутинную задачу, приведенную выше, в таком духе:

Эта задачка уже по-настоящему захватывающая. Она противопоставляет площадь и периметр. Вы не просто пользуетесь формулой; в процессе решения вам необходимо постичь суть прямоугольника. (Спойлеры — в примечаниях4.)

Или как насчет такого:

В этом уже есть какая-то перчинка, не правда ли?

За два быстрых шага мы перескочили от сомнамбулически нудной работы к довольно любопытной небольшой головоломке, и у шестиклассников горят глаза, когда я закидываю им эту задачу в качестве дополнительного вопроса на итоговом экзамене. (Ответ — опять-таки в примечаниях5.)

Творчество требует свободы, но одной свободы недостаточно. Псевдоголоволомка «нарисуйте два прямоугольника» подразумевает не только свободу, но и неизбежность скучных математических вычислений. Головоломка должна быть непредсказуемой, чтобы вызвать настоящий творческий порыв.

Вернемся к жестким крестикам-ноликам. У вас есть всего несколько вариантов каждого хода — вероятно, три или четыре. Их достаточно, чтобы включилось ваше воображение, и не настолько много, чтобы вы захлебнулись в море бессчетных альтернатив. Игра представляет собой гармонию жестких правил и свободы выбора.

И это великолепная иллюстрация того удовольствия, которое доставляет математика: творчество, порожденное непредсказуемостью. Привычные крестики-нолики — это математика с точки зрения большинства людей; жесткие крестики-нолики — это математика, какой она должна быть.

Вы можете найти множество аргументов в пользу того, что все творческие порывы стремятся нарушить четкие правила. По словам физика Ричарда Фейнмана, «творчество — это воображение в надежной смирительной рубашке». Жесткие правила сонета — «Укладывайся в ритм! Соблюдай длину строки! Следи за рифмовкой! Окей… а теперь выражай свою любовь, Вильям ты наш Шекспир!» — не ограничивают, а совершенствуют мастерство. Или возьмем, к примеру, спорт. Футболисты должны достичь определенной цели (забить мяч в ворота), следуя твердым правилам (нельзя дотрагиваться до мяча руками). В процессе игры они изобретают удар «ножницами» (удар через себя в падении) или удар «рыбкой» (удар головой в падении). Пренебрегая правилами, вы теряете изящество. Даже авангардное искусство — экспериментальный фильм, экспрессионистская картина, профессиональный реслинг — обретают силу благодаря тому, что выбор средств самовыражения ограничен.

Математики делают еще один концептуальный шаг. Мы не просто следуем заранее заданным правилам — мы изобретаем их и заигрываем с ними. Мы делаем предположение, выводим его логические следствия — и если они ведут в никуда или, что гораздо хуже, если они наводят скуку, мы ищем новый и более плодотворный путь.

Например, что произойдет, если я усомнюсь в постулате о параллельных прямых?

Евклид изложил этот закон параллельных прямых примерно в 300 году до н.э.; он принял его как должное и назвал фундаментальным предположением («постулатом»). Его преемники сочли это несколько смехотворным. Мы действительно должны принимать на веру данное утверждение? Может быть, его можно доказать? На протяжении двух тысячелетий ученые ковыряли это правило, как волоконце мяса, застрявшее между зубов. В конце концов они поняли: «О да! Это всего лишь предположение». Вы можете предположить иное. В таком случае традиционная геометрия обрушится и уступит место диковинным альтернативным геометриям, где слова «параллельность» и «прямая» имеют совершенно другой смысл.

Новое правило — новая игра.

То же самое работает в случае с жесткими крестиками-ноликами. Вскоре после того, как я стал пропагандировать эту игру, я увидел единственную техническую деталь, на которой все держится. Она сводится к вопросу, которого я уже касался раньше. Как быть в том случае, если мой противник перенаправляет меня на мини-поле, которое уже сыграно?

Сейчас мой ответ совпадает с тем, который я приводил выше. Если мини-поле уже сыграно, вы можете выбрать любое другое.

Но изначально мой ответ был другим. До тех пор, пока на этом мини-поле остаются пустые клетки, вам необходимо идти туда и делать ход, даже если он лишен смысла.

Это кажется мелочью — всего лишь одна нить в гобелене игры. Но посмотрите, как вся ткань распустится, если потянуть за нее.

Я покажу суть старого правила с помощью дебютной стратегии, которую я окрестил (в порыве скромности) «гамбитом Орлина»:

Иными словами, крестики жертвуют центральным мини-полем ради выигрышной позиции на оставшихся восьми. Я полагал, что эта стратегия весьма крута, пока читатели не указали мне на ее глубочайшую глупость. Гамбит Орлина дает небольшое преимущество, но его легко расширить до гарантированно беспроигрышной стратегии6. Вы можете пожертвовать не одним мини-полем, а двумя, завоевав при этом по два крестика на одной прямой на оставшихся семи мини-полях.

Я был смущен и переформулировал старое правило — легкая перенастройка, которая вдохнула в жесткие крестики-нолики новую жизнь.

Новое правило — новая игра.

Именно так развивается математика. Мы выбираем правила и начинаем играть. Когда игра нам приедается, мы меняем правила. Мы вводим новые ограничения и смягчаем старые. Каждое нововведение влечет за собой новые головоломки и вызовы.

По большей части математики не бьются над чужими загадками, а изобретают свои собственные, исследуя, какие ограничения приводят к интересным играм, а какие — к наводящим скуку. В конце концов постоянная смена правил и перескоки от одной игры к другой становятся похожи на отдельную грандиозную нескончаемую игру.

Математика — это логическая игра по изобретению логических игр.

Вся история математики снова и снова иллюстрирует этот тезис. Логические головоломки изобретают, решают и изобретают снова. Например, что произойдет, если я подправлю знакомое уравнение и заменю двойку на другое число: 3, или 5, или 797?

С ума сойти! Я превратил элементарное древнее уравнение, имеющее множество решений в целых числах (например, 3, 4 и 5), в самую досадную задачу, с которой когда-либо сталкивалось человечество, — в великую теорему Ферма. Она тревожила умы математиков около 350 лет, но в 1990-е годы гениальный британец[2] заперся на чердаке и вышел примерно десять лет спустя, щурясь на солнечный свет, с доказательством, что уравнение не имеет целочисленных решений, если степени неизвестных больше двух7.

А что произойдет, если я возьму две переменных, скажем x и y, и построю координатную сетку, чтобы посмотреть, как они зависят друг от друга?

Невероятно! Я изобрел координатную плоскость и совершил революцию в математике, наглядно изобразив алгебраические идеи, и поэтому мне платят кучу денег. Будем знакомы: меня зовут Декарт.

Или припомним, что возведение числа в квадрат всегда дает положительную величину. А что, если мы придумаем особое число, которое при возведении в квадрат дает отрицательную величину? И что тогда?

Вот это да! Мы изобрели мнимые числа, открыв возможности для исследования электромагнетизма и взломав математическую истину под названием «основная теорема алгебры»[3]. Звучит неплохо, можно включить в резюме.

В каждом из этих случаев математики поначалу недооценивали преображающую силу смены правил. Ферма полагал, что его теорема доказывается крайне просто; как выяснилось, он заблуждался, и его сбитые с толку преемники бились над доказательством несколько веков. Идея Декарта о координатной плоскости (которую называют «декартовой системой координат» в его честь) вначале была высказана в приложении к философскому тексту[4]; впоследствии текст забылся, а идея получила свое развитие. Над мнимыми числами издевались и смеялись несколько веков («настолько же неуловимые, насколько бесполезные», сказал великий итальянский математик Кардано8), пока их не признали настоящими и полезными. Кстати, само слово «мнимый»[5] по отношению к таким числам изначально имело уничижительный смысл, и придумал это поношение не кто иной, как Декарт.

Легко недооценить новаторские идеи, если они родились не в результате серьезных размышлений, а во время игры. Кто мог предположить, что небольшая перемена в правилах (новая степень, новая визуализация, новое число) превратит фантазию в нечто официально признанное?

Не думаю, что математики на том пикнике думали о таких вещах, когда склонились над игрой в жесткие крестики-нолики. Но в этом и не было необходимости. Осознаём мы это или нет, но логическая игра по изобретению логических игр оказывает влияние на всех нас.

Глава 2

Как математику видят школьники?


Увы, эта глава будет краткой и мрачной. Я прошу прощения. Но я слишком занят, чтобы просить прощения даже за другие вещи, например за мои душеразжижающие уроки математики.

Вы понимаете, что я имею в виду. Для множества школьников заняться математикой означает записать карандашом предписанную последовательность действий. Математические символы ничего не символизируют; они просто пляшут по странице, выполняя бестолковые хореографические упражнения.

Вся эта математика, приятель, —

Побасенки и выдумки абака,

Сплошь синусы да греческие буквы,

Не значащие ровно ничего[6].

Позвольте принести два кратких извинения. Во-первых, я прошу прощения у своих учеников за то, что я часто заставлял их чувствовать себя как персонаж на этой картинке. Я пытался избежать подобных ситуаций; кроме того, я пытался отвечать на все электронные письма, экономить на мороженом и посещать парикмахерскую чаще, чем раз в четыре месяца. Пожалуйста, простите, ведь я обычный человек и ничто человеческое мне не чуждо.

Во-вторых, я извиняюсь перед математикой за все нанесенные мною раны. В свою защиту могу сказать: госпожа Математика, вы живете в неосязаемой башне количественных концепций, зацементированных абстрактной логикой, поэтому вряд ли я оставил на вашем теле глубокие шрамы. Но я не настолько заносчив, чтобы не попросить прощения.

Вот и все в этой главе. Обещаю: следующая будет гораздо более взрывной, как и любой хороший сиквел.

Глава 3

Как математику видят математики?


Тут все очень просто. Математика похожа на язык.

Курьезный язык, я не спорю. Насыщенный, лаконичный и требующий кропотливого чтения. За то время, пока я успею проглотить пять глав «Сумерек»9, вы, возможно, так и не перелистнете страницу вашего учебника по математике. Этот язык приспособлен для того, чтобы рассказывать некоторые истории (например, о соотношениях между кривыми и уравнениями), но не в силах поведать другие (например, об отношениях между девушками и вампирами). Поэтому он обладает определенным лексиконом и полон слов, которых нет в другом языке. Например, даже если я переведу формулу на привычный английский, она останется бессмыслицей для тех, кто не знаком с рядами Фурье, так же как «Сумерки» — бессмыслица для тех, в ком не играют подростковые гормоны.

Но все-таки кое в чем математика — обычный язык. Пытаясь добиться понимания, математики используют стратегии10, знакомые большинству читателей. Они формируют мысленные образы. Они составляют парафразы в своей голове. Они пропускают отвлекающие формальности. Они проводят параллели между тем, что читают, и тем, что уже знают. И, как ни странно, они испытывают эмоции: радуются, веселятся или брезгливо кривятся, когда читают научные тексты.

За одну короткую главу нельзя научить бегло говорить на математическом языке, это не легче, чем научить американца бегло говорить по-русски. Филологи могут часами дискутировать о четверостишии Джерарда Мэнли Хопкинса[7] или о двусмысленной фразе из электронного письма. Математики тоже могут расходиться во мнениях по определенным вопросам. У каждого своя оригинальная точка зрения, сформированная жизненным опытом и личными ассоциациями.

Тем не менее я хочу предложить вашему вниманию несколько вольных переводов, несколько беглых взглядов на стратегию, с помощью которой математики могут читать актуальные математические статьи. Назовем ее Теорией закорючек 101[8].

Обычно я слышу от школьников вопрос: «Имеет ли значение, что я перемножу сначала: 11 и 13 или 7 и 13?» Ответ («Нет») менее интересен, чем подоплека вопроса: с точки зрения моих студентов, умножение — это действие, операция, которую вы делаете. Один из труднейших уроков, который я преподаю им, состоит в том, что иногда это не так.

Вы не должны воспринимать 7 × 11 × 13 как команду. Вы также можете назвать это число 1002 – 1, или 499 × 2 + 3, или 5005/5, или Джессика, или Число-которое-спасет-планету-Земля, или Старое доброе 1001[9]. Но если 1001 — имя, похожее на имена других друзей из мира чисел, то 7 × 11 × 13 — причудливое и произвольное прозвище. Точнее говоря, это официальное имя из свидетельства о рождении.

7 × 11 × 13 — это результат факторизации (то есть разложения на простые множители), задающий объемную точку зрения.

Некоторые ключевые фоновые знания: сложение скучно. А именно: записывать 1001 как сумму двух чисел — поистине тоскливое занятие. Вы можете представить это число в виде суммы 1000 + 1, или 999 + 2, или 998 + 3, или 997 + 4… и так далее, и так далее, пока вы не впадете в кому от скуки. Это разложение на слагаемые не говорит нам ничего особенного о числе 1001, потому что все числа можно разложить на слагаемые практически одинаковым способом (например, можно записать число 18 в виде суммы 17 + 1, или 16 + 2, или 15 + 3…). Визуально это похоже на деление одной кучи на две. Без обид, н…