Фрагмент книги «Работа с данными в любой сфере. Как выйти на новый уровень, используя аналитику»
Мало кто знает, что работать с данными в конечном итоге означает быть рассказчиком, передающим информацию. Так же, как и структурные компоненты историй, проекты по анализу и обработке данных тоже организованы логически. В книге «Работа с данными в любой сфере» четко выделяются пять этапов, которые составляют то, что я называю процессом обработки и анализа данных. Это не единственный подход, который можно использовать, но он обеспечит нашему проекту связь с практикой и продвижение к логическому завершению. И он четко и ясно структурирован, что мне так нравилось в детстве.
И вот я решил рассказать историю данных…
Но я абсолютный новичок
Наука о данных фактически является одной из тех областей, которые извлекают выгоду из опыта других сфер. Я надеюсь, что многие мои читатели уже весьма преуспели в той или иной профессии. Хорошо. Вы ничего не потеряете, если обратитесь к науке о данных, работая в другой области. Отнюдь не вредно для начала разбираться в чем-то еще. Это своего рода фундамент, который вам пригодится, чтобы стать хорошим аналитиком данных.
Начав работать в транснациональной консалтинговой компании Deloitte, я не знал ни одного из алгоритмов, которые мы рассмотрим в этой книге. Да никто от меня этого и не ожидал. Совсем немногие начали свою карьеру с науки о данных. Прочитав книгу, вы обнаружите, что те, кто добился успеха в этой сфере, даже не думали о ней, пока находились в начале своей карьеры. Итак, отбросьте страх перед цифровой неграмотностью — взяв эту книгу, вы сделали первый шаг на пути в мир науки о данных.
Эй, а где код?
Если вы, как и я, пролистываете книгу, прежде чем приступить к чтению, то, возможно, заметили, что вам не встретилось ни одной строки кода. Я слышу, как вы говорите: «Но это ведь книга о науке о данных, так что же происходит?» Наука о данных — чрезвычайно широкий предмет. «Работа с данными в любой сфере» погружает вас в тему и вдохновляет на размышления о том, как эта дисциплина может быть включена в вашу текущую или будущую деловую практику. Вы узнаете методы науки о данных — потому что ее «ингредиенты» (код) легко доступны онлайн. Если воспользоваться аналогией с приготовлением пищи, перед вами в меньшей степени просто книга рецептов и в большей — подробная информация об основных методах, используемых в науке о данных. Изучите их тщательно, и вы начнете интуитивно понимать, почему вам нужно применять определенные коды и методы, — гораздо более эффективный подход к обучению, чем просто предоставление строк кода для подключения к вашему проекту.