Работа с данными в любой сфере. Как выйти на новый уровень, используя аналитику

Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

Моим родителям,

Александру и Елене Еременко,

которые научили меня самому важному

в жизни — быть хорошим человеком

Бонус для читателей

Спасибо, что выбрали эту книгу. Вы сделали огромный шаг на пути в науку о данных.

Получите бесплатный доступ к моему курсу A-Z Data Science. Просто зайдите на сайт www.superdatascience.com/bookbonus и используйте пароль datarockstar.

Удачи в анализе данных!

Введение

«Наверное, вы всегда хотели стать аналитиком данных — с самого детства?»

Мне приятно, что меня об этом спрашивают. Да, я люблю свою работу. Я с большим удовольствием обучаю студентов основам науки о данных. И здорово, что люди, похоже, думают, что энтузиазм по отношению к данному предмету возник во мне еще в молодом возрасте. Но это абсолютно не соответствует действительности. Скажем честно, ни один ребенок не мечтает о том, чтобы стать ученым — аналитиком данных. Дети хотят быть космонавтами. Танцорами. Врачами. Пожарными. И если вы грезите о спасении жизней или о полетах в космическом пространстве, вы вряд ли остановите свой выбор на столь приземленном занятии.

Когда люди спрашивают меня, всегда ли я хотел построить карьеру в области науки о данных, я возвращаюсь к своему детству и вижу маленького русского мальчика, выросшего в Зимбабве. Запах тлеющих углей, брачные вопли африканских красных жаб, незабываемый уют зимнего вечера, кончики пальцев, переворачивающие страницу за страницей сборника историй для детей, — это фрагменты воспоминаний о множестве прекрасных вечеров, когда я слушал русские сказки, которые читала мне мама.

Моя мать хотела, чтобы я, мои братья и сестры любили Зимбабве, но она также заботилась о том, чтобы мы знали свои культурные корни. Она подумала, как наилучшим образом передать нам эту информацию, и решила, что самый действенный способ — сказки. Когда я в конце концов вернулся в Москву — в город, который едва помнил, — то почувствовал, что возвращаюсь домой, благодаря крупицам информации о России, вплетенным в затейливые сюжеты.

Такова сила повествования. И все множество услышанных сказок я хотел разбить на составляющие их компоненты. Мне нужно было увидеть большую картину, но я хотел видеть ее сквозь призму маленьких деталей. Я был очарован каждой частью механизма, создающего что-то настолько прекрасное. Я интуитивно знал: для того чтобы самому рассказать хорошую историю, сначала нужно собрать эти маленькие единицы информации. Именно так сформировалось мое отношение к данным.

В сегодняшнюю цифровую эпоху данные используются для создания историй о том, кто мы такие, как мы себя представляем, что нам нравится и когда мы хотим чего-то. Для того, чтобы проложить тропинку с уникальными виртуальными следами. Машины теперь знают о нас больше, чем мы сами, благодаря всем доступным им данным. Они читают наши личные данные как сборник рассказов о нас. И в науке о данных замечательно то, что любая дисциплина сегодня записывает свои данные, а это значит, что, освоив профессию аналитика данных, мы также можем стать космонавтами, танцорами и врачами, о чем так сильно мечтали.

Мало кто знает, что работать с данными в конечном итоге означает быть рассказчиком, передающим информацию. Так же, как и структурные компоненты историй, проекты по анализу и обработке данных тоже организованы логически. В книге «Работа с данными в любой сфере» четко выделяются пять этапов, которые составляют то, что я называю процессом обработки и анализа данных. Это не единственный подход, который можно использовать, но он обеспечит нашему проекту связь с практикой и продвижение к логическому завершению. И он четко и ясно структурирован, что мне так нравилось в детстве.

И вот я решил рассказать историю данных…

Но я абсолютный новичок

Наука о данных фактически является одной из тех областей, которые извлекают выгоду из опыта других сфер. Я надеюсь, что многие мои читатели уже весьма преуспели в той или иной профессии. Хорошо. Вы ничего не потеряете, если обратитесь к науке о данных, работая в другой области. Отнюдь не вредно для начала разбираться в чем-то еще. Это своего рода фундамент, который вам пригодится, чтобы стать хорошим аналитиком данных.

Начав работать в транснациональной консалтинговой компании Deloitte, я не знал ни одного из алгоритмов, которые мы рассмотрим в этой книге. Да никто от меня этого и не ожидал. Совсем немногие начали свою карьеру с науки о данных. Прочитав книгу, вы обнаружите, что те, кто добился успеха в этой сфере, даже не думали о ней, пока находились в начале своей карьеры. Итак, отбросьте страх перед цифровой неграмотностью — взяв эту книгу, вы сделали первый шаг на пути в мир науки о данных.

Эй, а где код?

Если вы, как и я, пролистываете книгу, прежде чем приступить к чтению, то, возможно, заметили, что вам не встретилось ни одной строки кода. Я слышу, как вы говорите: «Но это ведь книга о науке о данных, так что же происходит?» Наука о данных — чрезвычайно широкий предмет. «Работа с данными в любой сфере» погружает вас в тему и вдохновляет на размышления о том, как эта дисциплина может быть включена в вашу текущую или будущую деловую практику. Вы узнаете методы науки о данных — потому что ее «ингредиенты» (код) легко доступны онлайн. Если воспользоваться аналогией с приготовлением пищи, перед вами в меньшей степени просто книга рецептов и в большей — подробная информация об основных методах, используемых в науке о данных. Изучите их тщательно, и вы начнете интуитивно понимать, почему вам нужно применять определенные коды и методы, — гораздо более эффективный подход к обучению, чем просто предоставление строк кода для подключения к вашему проекту.

Как пользоваться этой книгой

Я написал эту книгу специально для того, чтобы вы могли обратиться к ней, где бы вы ни находились — в поезде, в ванне, в ожидании человека своей мечты. Читайте ее по частям или в один присест, по главам, выбирая самое лучшее, выделяя нужное желтым маркером, наклейками. В начале каждой части вы найдете краткое введение, помогающее быстро определить, какая глава окажется для вас наиболее интересной. Часть первая более объемна, она дает общее представление о науке о данных. Вторая и третья части сосредоточены на процессах анализа и обработки данных, интуиции, стоящей за некоторыми из самых мощных на сегодняшний день аналитических моделей, и на том, как повысить ваши шансы на успех, совершая первые шаги в направлении цели.

Если вы новичок, то получите максимальную отдачу от книги, прочитав ее от корки до корки. Если вы знакомы с наукой о данных как с дисциплиной и хотите добраться до сути того, как применять ее методы, не стесняйтесь обратиться к главе, которая вам больше всего поможет.

Часть первая

«Что это?» Ключевые принципы

Учитывая очевидно безграничный потенциал технических и прикладных наук и связанные с ними широкие возможности для умелых предпринимателей, некоторые могут спросить, почему они вообще должны заниматься наукой о данных — почему бы просто не изучить технологические принципы? В конце концов, технологии управляют миром и не выказывают никаких признаков сдачи позиций. Любой читатель, заботящийся о своей карьере, может подумать, что научиться разрабатывать новые технологии, несомненно, будет наилучшим способом двигаться вперед.

Легко расценивать технологии как фактор, который меняет мир, — они дали нам персональный компьютер, интернет, искусственные органы, беспилотные автомобили, глобальную систему позиционирования (GPS), — но мало кто думает о науке о данных как о движущей силе многих из этих изобретений. Вот почему вам стоит прочитать именно эту книгу, а не книгу о технологиях: вам нужно понять, как работает система, чтобы внести в нее изменения.

Мы не должны рассматривать данные только как скучных, но готовых помочь родителей, а технологии — как стильных подростков. Важность науки о данных не начинается и не заканчивается объяснением того, что технологии нуждаются в данных как одном из многих других функциональных элементов. Это было бы отрицанием прелести данных и множества интересных приложений, которые они предлагают для работы и игры. Короче говоря, невозможно иметь одно без другого. Это означает, что, если у вас есть основа для науки о данных, перед вами будет открыта дверь к широкому кругу других областей, в которых нужен аналитик данных. Это делает науку о данных необычной и благоприятной областью исследований и практики.

В первой части приводится информация о вездесущности данных, а также о развитии и ключевых принципах науки о данных. Эти сведения полезны для начального погружения в предмет. Вы получите четкое представление о том, какое отношение данные имеют к вам, и задумаетесь не только о том, как данные могут непосредственно принести пользу вам и вашей компании, но и как вы можете в течение длительного времени использовать их в профессиональной и прочих сферах.

Начало пути

Глава 1 станет началом нашего путешествия в науку о данных. Сначала в ней будет продемонстрировано, насколько велики масштабы распространения данных и то, каким образом мы все вносим вклад в их производство в наш компьютерный век. Затем я расскажу, как люди собирают данные, работают с ними и, что очень важно, как данные можно использовать для поддержки большого количества проектов и методов внутри и вне самой дисциплины.

Мы установили, что проблемы с наукой о данных частично связаны не с ее относительной сложностью, а скорее с тем, что эта область знаний для многих по-прежнему покрыта туманом. Только когда мы точно понимаем, сколько данных имеется и как они собраны, мы можем начать рассматривать различные способы работы с ними. Мы достигли той точки в нашем технологическом развитии, когда информацию можно эффективно собирать и хранить на благо всех отраслей промышленности и научных дисциплин, о чем свидетельствует количество общедоступных баз данных и финансируемых правительством проектов по агрегированию данных культурными и политическими институтами. Вместе с тем сравнительно немногие знают, как получить доступ к данным и как их проанализировать. Если же люди не осознают пользу данных для своей профессиональной деятельности, все красивые массивы данных только собирают пыль. В этой главе объясняется, почему наука о данных крайне важна именно сейчас, почему это не просто тенденция, которая скоро выйдет из моды, и почему вы должны рассмотреть возможность внедрения ее практик в качестве ключевого компонента решения ваших рабочих задач.

Наконец, в этой главе описывается, как стремительная траектория развития технологий не позволяет нам даже на время отвернуться от науки о данных. Каковы бы ни были представления о мире, к которому мы стремимся, невозможно остановить сбор данных, их обработку и использование. Тем не менее нельзя игнорировать тот факт, что сами по себе данные не касаются вопросов морали, и это обусловливает возможность их нечестного или неправильного использования. Те из вас, кто обеспокоен такого рода злоупотреблениями, могут принять участие в противостоянии им и вступить в дискуссию с глобальными институтами, которые занимаются проблемами, связанными с этикой данных — аспектом, который я нахожу настолько существенным, что отвел ему специальный подраздел в главе 3.

Будущее принадлежит данным

Все — каждый процесс, каждый датчик — скоро будет управляться данными. Это резко изменит способ ведения бизнеса. Я предсказываю, что через десять лет от каждого сотрудника любой организации в мире будет требоваться обладание определенным уровнем грамотности в сфере данных и умение работать с ними, получая на их основе некоторые идеи для повышения ценности бизнеса. Не такая уж дикая мысль, если учесть, что на момент публикации этой книги предполагается, что многие люди знают, как пользоваться цифровым кошельком Apple Pay, выведенным на рынок только в 2014 г.

Глава 2 — «Как данные удовлетворяют наши потребности» — наглядно демонстрирует, что данные являются эндемичными для каждого аспекта нашей жизни. Они управляют нами, накапливая силу в цифрах. Данные всегда играли важную роль в нашем существовании. Наша ДНК несет в себе основные данные о нас, и эти базовые формы данных руководят нами: отвечают за то, как мы выглядим, за форму наших конечностей, за структуру нашего мозга и его способность обрабатывать информацию, а также за диапазон эмоций, которые мы испытываем. Мы — хранилища этих данных, шагающие флеш-накопители биохимической информации; вместе с данными нашего партнера мы передаем их нашим детям и «кодируем». Не интересоваться данными означает не интересоваться самыми фундаментальными принципами жизни.

В этой главе объясняется, как данные используются во многих областях, и для иллюстрации я использую примеры, которые непосредственно перекликаются с пирамидой потребностей Абрахама Маслоу, теорией, хорошо знакомой многим ученым и практикам в области бизнеса и управления. Если эта иерархия является для вас новинкой, не беспокойтесь — я объясню ее суть и то, как она применима к нам, в главе 2.

Приостановка развития

Последняя глава первой части покажет, как новички в науке о данных могут изменить свое мышление, чтобы погрузиться в нее, и поможет выявить те области, где уже сейчас возможно применить анализ данных. Многие достижения науки о данных основательно затронули другие сферы и поставили вопросы о будущем перед самыми разными специалистами и учеными. Если вы хотите развивать свою карьеру как аналитик данных, эта глава подскажет некоторые идеи для сфер, в которых вы, возможно, уже работаете.

В главе 3 я также представлю некоторые наиболее важные подходы, которые вы можете использовать, чтобы начать работу как практик. Наука о данных намного проще, чем многие другие научные дисциплины. Вам не нужно быть прирожденным ученым, чтобы овладеть принципами науки о данных. Что вам действительно необходимо — это умение придумывать различные способы извлекать пользу из данных тогда, когда дело касается бизнес-операций или личной мотивации. Ведь ученые — исследователи данных изучают возможности предоставленной информации. Вы можете удивиться, узнав, что у вас уже есть некоторые навыки и опыт, которые вы можете использовать на своем пути к освоению этой дисциплины.

Разумеется, новичкам необходима разумная осторожность. Любой, кто использовал Excel, работал в офисной среде или изучал в университете предмет, имеющий научную составляющую, вероятно, уже встречался с данными. Но некоторые из методов использования данных, которые вы, возможно, усвоили, будут неэффективными, и приверженность тому, что вы уже знаете, может помешать вам изучить наиболее действенные способы использования массивов данных: мы обсудим это подробно во второй и третьей частях.

Несмотря на явный положительный эффект использования данных, важно не обольщаться. Поэтому в главе 3 рассматриваются и различные угрозы безопасности, которые данные могут представлять для своих пользователей, и то, как работают аналитики данных для решения текущих и потенциальных проблем. Этика данных является особенно привлекательной и заслуживающей внимания областью, поскольку она способна изменять и направлять будущие разработки в области науки о данных. Учитывая то, что мы знаем о сборе информации, этика данных — в той мере, в какой ее можно использовать в машинах и онлайн, — создает основу для общения людей и технологий. Когда вы прочитаете эту главу, подумайте о том, как каждая из областей может быть связана с тем, как вы работаете, и насколько полезны для вашего бизнеса дальнейшие инвестиции в эту сферу.

01

Определение данных

Подумайте о последнем фильме, который вы видели в кинотеатре. Как вы впервые узнали о нем? Возможно, вы кликнули на трейлер, когда YouTube рекомендовал его вам, или же ролик появился в качестве рекламы, прежде чем YouTube показал вам видео, которое вы действительно хотели посмотреть. Может быть, вы прочитали в социальной сети, что ваш друг хвалит картину, или в вашей новостной ленте появился увлекательный клип из фильма. Если вы любитель кино, сайт-агрегатор мог подобрать его для вас как фильм, который вам может понравиться. Вы, не исключено, нашли анонс фильма за пределами интернета — в своем любимом журнале либо же могли обратить внимание на афишу по дороге в кофейню, где лучше работает Wi-Fi.

Ни один из этих источников информации не был случайным. Звезды не просто сошлись для вас и фильма в нужный момент. Оставим идеалистические совпадения неожиданным экранным встречам. То, что привело вас в кино, было в меньшей степени желанием увидеть фильм и в гораздо большей — мощной смесью основанных на данных признаков, которые выделили вас в качестве вероятного зрителя, прежде чем вы сами поняли, что хотите посмотреть фильм.

Когда вы взаимодействовали с каждым из этих источников информации, вы оставили немного сведений о себе. Мы называем их выхлопными данными. Этот процесс не ограничивается вашим присутствием в онлайне и важен не только для создания социальных сетей. Независимо от того, используете ли вы социальные медиаплатформы, нравится вам это или нет, вы делитесь своими данными.

Так было всегда — мы просто научились лучше записывать и собирать их. Любое количество ваших ежедневных взаимодействий может способствовать этому «выхлопу». По дороге в лондонское метро вас запечатлевают камеры видеонаблюдения. Сев на поезд, вы добавляете информацию в базу «Транспорт» статистических данных Лондона об использовании метро в час пик. Когда вы делаете закладки или выделяете страницы романа на своем устройстве для чтения Kindle, вы помогаете дистрибьюторам понять, что особенно понравилось читателю, и что они могли бы разместить в будущих маркетинговых материалах, и как глубоко читатели склонны погрузиться в роман, прежде чем остановиться.

Если вы наконец решите отказаться от испытаний в общественном транспорте и вместо этого поедете в супермаркет на автомобиле, выбранная вами скорость поможет GPS-сервисам показывать своим пользователям в режиме реального времени, насколько напряженный трафик в районе, и также позволит вашему автомобилю оценить, сколько еще времени остается, прежде чем вам стоит искать автозаправочную станцию.

И сегодня, когда вы выходите из этих точек соприкосновения, оставленные вами данные уже собраны и добавлены в «проект» о вас, который детализирует ваши интересы, действия и желания.

Но это только начало истории данных. Я расскажу вам о том, насколько действительно распространены данные. Вы узнаете основные понятия, которые пригодятся на пути к овладению наукой о данных, а также ключевые определения, инструменты и методы — они позволят вам применить навыки работы с данными к своей собственной деятельности. Эта книга расширит ваши горизонты, показывая, как наука о данных может использоваться в разных областях такими способами, которые прежде казались вам невозможными. Я опишу, как умение работать с данными может дать толчок вашей карьере и изменить ваш бизнес — будь то посредством идей, которыми вы впечатлите топ-менеджеров, или даже благодаря запуску стартапа.

Данные повсеместны

Прежде чем двигаться дальше, нужно уточнить, что подразумевается под данными. Когда люди размышляют о данных, они думают о том, как те активно собираются, хранятся в базах данных на непостижимых корпоративных серверах и направляются на исследования. Но это устаревший взгляд. Сегодня данные гораздо более вездесущи[1].

Все весьма просто: данные — это любая единица информации. Это побочный продукт любых действий, пронизывающих каждую часть нашей жизни не только в сфере интернета, но также в истории, географии и культуре. Наскальные изображения — данные. Музыкальный аккорд — данные. Скорость автомобиля, билет на футбольный матч, ответ на вопрос анкеты — все это данные. Книга — это тоже данные, как и глава в этой книге, как слово в главе, а также буква в слове. Им не нужно быть собранными, чтобы считаться данными. Их не нужно хранить в архиве организации, чтобы они считались данными. Значительная часть данных в мире, вероятно, пока не объединены в какой-либо базе данных.

Предположим, что в этом определении данных как единицы информации данные являются осязаемым прошлым. Весьма мудро, если задуматься. Данные — это прошлое, а прошлое — это данные. Запись всего, что можно отнести к данным, называется базой данных. И аналитики данных могут использовать их для лучшего понимания наших нынешних и будущих действий. Они применяют тот же принцип, что веками использовали историки: мы можем учиться на опыте истории. Мы можем учиться на наших успехах — и на наших ошибках, чтобы улучшить настоящее и будущее.

Единственный аспект данных, который в последние годы резко изменился, — наша способность собирать, организовывать, анализировать и визуализировать их в контекстах, которые ограничены только нашим воображением. Куда бы мы ни пошли, что бы мы ни покупали, какими бы ни были наши интересы, все эти данные собираются и систематизируются в тренды, которые помогают рекламодателям и маркетологам продвигать свои продукты к тем, кто в них заинтересован; которые показывают политические предпочтения членов правительства в соответствии с их происхождением или возрастом и которые помогают ученым создавать искусственный интеллект (ИИ), реагирующий не только на простые запросы, но и на сложные эмоции, этику и идеологию.

С учетом всех обстоятельств вы можете спросить: «Каковы же ограничения: что мы называем данными, а что — нет? Считаются ли фактические сведения о цикле цветения растения (количественные данные) такими же данными, как фиксация ученым культурного обычая, связанного с передачей умирающему родственнику букета цветов из родной страны (качественные данные)?» Ответ — да. Данные не дискриминируются. Не имеет значения, является ли рассматриваемая единица информации количественной или качественной. Качественные данные, возможно, были менее полезными в прошлом, когда не была достаточно сложной технология их обработки, но благодаря достижениям в алгоритмах, способных обрабатывать такие данные, этот недостаток быстро уходит в прошлое.

Говоря об ограничениях понятия «данные», еще раз вспомните, что данные…