Энциклопедия торговых стратегий

Эту книгу я посвящаю Розалин Анкер Кац

 

Благодарю тебя за любовь и поддержку

Издано при содействии Международного Финансового Холдинга FIBO Group, Ltd.

 

Перевод П. Глоба

Научный редактор А. Дзюра

Технический редактор Н. Лисицына

Компьютерная верстка А. Фоминов

Корректоры М. Савина, О. Ильинская

Дизайн обложки DesignDepot

 

© The McGraw-Hill Companies, Inc. 2000

All rights reserved.

© Издание на русском языке, перевод, оформление. ООО «Альпина Бизнес Букс», 2006

© Электронное издание. ООО «Альпина Паблишер», 2012

 

Кац Дж.

Энциклопедия торговых стратегий / Джеффри Оуэн Кац, Донна Л. Маккормик; Пер. с англ. — 4-е изд. — М.: Альпина Паблишер, 2011.

 

ISBN 978-5-9614-2669-4

 

Все права защищены. Никакая часть электронного экземпляра этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для частного и публичного использования без письменного разрешения владельца авторских прав.

Предисловие

 

В этой книге собрана информация, необходимая каждому трейдеру, желающему повысить свою квалификацию. Как источник справочного материала и руководство по разработке систем книга описывает много известных методик, а также предлагает новые способы получения прибыли на рынке и преимущества в торговле. Кроме того, в книге содержатся рекомендации по улучшенным методам контроля риска, показаны рискованные и потенциально убыточные методики, способные привести к разорению. Освещены даже самые основы: как приобретать и представлять информацию, как вести тестирование систем на исторических данных с помощью симуляторов, как безопасно проводить оптимизацию и как оценивать результаты всестороннего статистического анализа. В книге показаны преимущества хорошей механической торговой системы над другими торговыми методами.

Для всех трейдеров, за исключением немногих, системная торговля дает лучшие результаты, чем интуитивная торговля. Торговля по интуиции включает субъективные решения, которые часто бывают пристрастными и ведут к убыткам. Аффект, неуверенность, жадность и страх легко вытесняют знание и разум в роли ведущей торговлю силы. Кроме того, очень трудно протестировать торговый метод, где отсутствуют жесткие правила принятия решений. С другой стороны, системная торговля объективна. В ней нет места эмоциям. При помощи запрограммированной логики и представлений механические системы следуют действиям трейдера. Самое лучшее в них — возможность простого тестирования: плохую систему можно отбросить или скорректировать, а хорошую — улучшить. В этой книге приведена ценная информация, чрезвычайно полезная при проектировании, создании и тестировании прибыльной механической торговой системы. Хотя основной упор сделан на глубокий критический анализ различных факторов, которые, как считается, влияют на успех системы, рассмотрены и проанализированы также основные элементы полной механической торговой системы.

Чтобы считаться полными, механические торговые системы должны иметь методики входа и выхода. Методика входа должна определять подходящие моменты для входа в рынок, когда высока вероятность сделок с высоким соотношением риска и прибыли. Методика выхода должна защищать от излишних потерь капитала при неудачной сделке или развороте рынка, а также эффективно фиксировать прибыль при благоприятном движении рынка. В книге уделено достаточно внимания систематическому тестированию на исторических данных и оценке систем, методов и стратегий выхода. Даже трейдер, уже имеющий приемлемую стратегию или систему, возможно, сумеет найти нечто полезное для ее улучшения, увеличения прибылей и снижения рисков.

Кроме того, в книге приведены результаты тестов торговых систем для портфелей, состоящих из нескольких финансовых инструментов. Как показано, анализ портфельных торговых систем не представляет значительной сложности, хотя и не так прост, как анализ одного торгового инструмента. Показана и доказана простота вычисления графиков роста капитала, максимальных падений капитала, соотношений риска и прибыли, доходности системы, количества сделок и других показателей, важных для оценки системы управления портфелем акций или товаров. Также описан процесс проведения тестирования и оптимизации со смещением вперед и других методов испытания и оптимизации портфелей. Например, приводится инструкция по поиску параметров, которые улучшают прибыль (или лучшее отношение Шарпа, или любой другой показатель эффективности пакета) по каждому инструменту в отдельности и по всему портфелю в целом. Особенно полезен этот материал будет для небольших институциональных трейдеров, желающих вести системную торговлю несколькими инструментами в целях увеличения диверсификации, снижения риска и повышения ликвидности.

Кроме того, чтобы сохранить объективность и полную беспристрастность всех методов тестирования разнообразных систем, мы применили наш академический и научный опыт для исследования методик входа и выхода. Для подтверждения результатов тестов использовались статистические методы, на которых основываются успешные торговые стратегии.

Чтобы сделать наши исследования полезными для всех, детально обсуждаются все логические построения, лежащие в основе каждой стратегии входа или выхода. Для тех, кто желает повторить и расширить наши разработки, приведены коды программ.

Поскольку основа торговой системы всегда состоит из двух компонентов, книга, естественно, включает две части: «Исследование входов» и «Исследование выходов». Рассмотрение отдельных технологий входов и выходов, например нейронных сетей, проводится в контексте разработки конкретных стратегий входа или выхода. Введение содержит указания по фундаментальным принципам использования научного подхода при разработке торговых систем. Первая часть книги — «Рабочие инструменты» — содержит основную информацию, необходимую всем системным трейдерам. В заключении подводятся итоги исследований всех систем, даются советы по их оптимальному применению, что кладет начало дальнейшим исследованиям. В конце книги приведены ссылки и рекомендуемые материалы.

Мы хотели бы пояснить, что данная книга является продолжением и развитием цикла статей, написанных нами для журнала Technical Аnalysis of Stocks and Commodities начиная с 1996 г.

Джеффри Оуэн Кац
и Донна Л. Маккормик

Введение

 

У большинства трейдеров есть общая черта: они взялись предсказывать движение финансовых рынков, на которых торгуют, взялись искать островки прибыльной «неэффективности» в огромном океане эффективного рынка. Для одного из авторов, Джеффри Каца, эта деятельность сначала была способом потакать своей любви к математике. Более десяти лет назад он разработал модель, дававшую сигналы входа для Standard & Poor’s 500 (S&P 500) и ОЕХ. Хотя эти сигналы были верны примерно в 80% случаев, Кац часто принимал торговые решения, не основанные на сигналах системы. Он полагался на собственные решения в выборе видов приказов для входа, выхода и установки стопов. Эти решения принимались скорее под влиянием страха и жадности, составляющих суть интуитивной торговли, чем на основе знаний и разума. В результате Кац колебался, принимал ошибочные решения и терял деньги чаще, чем выигрывал. Как и для большинства трейдеров, для Каца торговля без жестких «механических» правил принятия решений была неэффективна.

Если интуивная торговля не приемлема, то что нужно? Возможно, ответом могла стать системная торговля. Кац решил разработать полностью автоматизированную торговую систему в виде компьютерной программы, которая могла бы генерировать приказы на покупку, продажу, размещение защитных остановок и прочие приказы без вмешательства человека. Если следовать логике, такая система могла бы исключить проблемы эмоционального порядка — если у пользователя хватит дисциплины строго следовать системе. Такая система давала бы ясные и обоснованные входы, «нормальные» выходы при фиксации прибыли, а также «аномальные» выходы с целью контроля риска для ограничения потерь в неудачных сделках.

Полностью автоматизированная система также дала бы возможность проводить неискаженные представлениями человека тесты на исторических данных и, что особенно важно, на больших объемах этих данных. Кац решил, что единственный способ определить пригодность и работоспособность системы — это тщательное тестирование. Поскольку исторические данные уже известны пользователю, то провести достоверное тестирование вручную нельзя. Если, глядя на исторический график, Кац считал, что какой-то момент был «хорошим» для входа в рынок, то верить этому было нельзя, поскольку он уже знал, что на самом деле произошло после этого момента. Кроме того, если исторические графики просматривать в поисках других моментов и моделей, поиск в них невооруженным глазом будет искаженным. Если же модель можно формально определить и ясно закодировать, компьютер может провести работу объективно, проработав многолетние исторические данные в поисках заданной формации, и проверить, что случилось на рынке после каждого обнаружения заданной модели. Таким образом, результаты теста покажут, действительно ли данная модель дает прибыльные торговые сигналы. Подобным же образом можно исследовать прибыльность правил выхода.

Следовательно, механическая торговая система с хорошо определенными правилами позволит учитывать такие факторы, как комиссионные, проскальзывание, невыполненные приказы и скачкообразные изменения цен. Это позволит избежать неприятных потрясений при переходе от компьютерных тестов к настоящей торговле. Одной из проблем Каца в начале его торговой карьеры было неумение учитывать комиссионные и другие издержки на заключение сделок по опционам ОЕХ. При помощи полной механизации он смог убедиться, что система включает все подобные факторы в своих тестах. Таким образом, можно избежать потенциальных неожиданностей и получить очень реалистичную оценку поведения системы или ее элементов. Кац решил, что системная торговля может стать ключом к успеху на рынке.

Что такое полностью механическая торговая система?

Одна из проблем, с которой столкнулся Кац в ранней работе, состояла в том, что его «система» давала только сигналы входа, оставляя решение о выходе на усмотрение трейдера. Следовательно, данная система не была полностью механической. Полностью механическая торговая система, которая может тестироваться и применяться совершенно объективным образом без вмешательства человека, должна содержать точные правила и для входов, и для выходов из рынка. Чтобы быть действительно полной, система должна давать следующую информацию:

  1. Когда, как и по какой цене входить в рынок.
  2. Когда, как и по какой цене выходить из рынка с убытком.
  3. Когда, как и по какой цене выходить из рынка с прибылью.

Сигналы входа механической торговой системы могут быть простыми, например однозначный сигнал покупки или продажи при открытии торгов на следующий день. Можно использовать лимитный приказ или стоп-приказ на определенном ценовом уровне на следующий день. Кроме того, возможны очень сложные приказы, исполняемые в отдельные периоды времени при соответствии некоторым условиям: например, стоп-приказ на покупку или продажу, если на рынке при открытии образуется разрыв указанной величины.

Выходы торговой системы также могут основываться на приказах различных типов — от простых до очень сложных. Выход из убыточной сделки часто достигается с помощью защитной остановки, которая прекращает сделку до того, как будет нанесен серьезный убыток. Эта остановка, представляющая собой стоп-приказ для избежания неконтролируемых потерь, выполняет одну из функций, для которых создаются стратегии выхода в составе системы: функцию контроля риска. Выход с прибылью может достигаться несколькими способами, в том числе и использованием целей прибыли — лимитных приказов, расположенных так, что сделка заканчивается после некоторого движения рынка в пользу трейдера; «следящих остановок», которые представляют собой стоп-приказы, необходимые для выхода с прибылью при начале противоположного движения рынка, и большого разнообразия других видов приказов и их сочетаний.

В ранних попытках Каца действовать на рынке единственными доступными сигналами были сообщения о возможном направлении рынка или точках разворота. Эти сигналы служили основой для приказов на покупку или продажу по текущей цене — а такие приказы часто не выполняются и дают большое проскальзывание. Хотя сами сигналы были часто весьма точны, они не улавливали каждую точку разворота, и Кац попросту не мог разворачивать позицию на основе каждого сигнала. Требовались отдельные правила выхода, поскольку программа Каца не давала сигналов для выхода, будучи не полностью механической моделью. Поскольку система не давала сигналов выхода, все выходы оставались субъективными, что и было одной из проблем торговли на тот момент. Кроме того, не удавалось достаточно эффективно оценить поведение системы на длительной выборке исторических данных, приходилось «играть вслепую». Без полностью механической торговой системы, т.е. системы, включающей выходы и входы, не говоря уже о качественном тестировании, невозможно оценивать такие показатели, как общая доходность, максимальное падение капитала, отношение Шарпа, трудно оценивать исторический график изменения капитала и исследовать ряд других важных характеристик системы (например, вероятность прибыли в будущем). Чтобы дать доступ к этим функциям, требовалась полная система, дающая сигналы на вход и на выход из рынка.

Какие входы и выходы считать оптимальными?

Предположим, что у нас имеется механическая торговая система, которая имеет модель входа, дающую приказы на вход, и модель выхода, дающую приказы на выход (включая необходимые защитные остановки). Как оценить результаты работы системы и определить, какой приказ хорош, а какой плох?

Обратите внимание, что мы говорим о приказах на выход и вход, а не о сигналах. Почему? Потому, что сигналы слишком неопределенны. Означает ли «сигнал» на покупку, что следует покупать при открытии следующего дня или покупать с использованием стоп- или лимит-приказа? И если да, то по какой цене? Если поступает «сигнал» на выход из длинной позиции, когда должен производиться выход — при закрытии, при достижении определенной цены или, может быть, по защитной остановке? Каждый из таких приказов будет иметь различные последствия в конечном результате. Таким образом, для определения работоспособности метода входа или выхода нужно, чтобы он давал не общие сигналы, а в определенные моменты времени давал специфические приказы. Полностью определенный приказ на вход или выход может быть легко проверен на качество или эффективность.

В широком смысле слова хороший приказ на вход — это такой приказ, с которым трейдер входит на рынок с относительно низким риском и высокой вероятностью потенциальной прибыли. Раем для трейдера была бы система, которая давала бы приказы на покупку и продажу по экстремальным ценам при каждом развороте. Даже если бы выходы не приносили большой прибыли, ни одна из сделок не имела бы более одного-двух тиков неблагоприятного движения (максимальных нереализованных убытков за сделку), и в любом случае вход в рынок достигался бы по лучшей из доступных цен. В несовершенном реальном мире, впрочем, входы никогда не будут настолько хороши, но они могут быть достаточно хороши, чтобы при приемлемой эффективности выходов неблагоприятное движение удерживалось на низком уровне и соотношение риска/прибыли было удовлетворительным.

Что составляет эффективный выход? Эффективный выход должен защищать капитал трейдера от неблагоприятной рыночной ситуации. Важно защитить капитал от размытия убыточными сделками, но при этом не обрывать слишком рано потенциально прибыльные сделки, превращая их в малоубыточные. Идеальный выход должен удерживать позицию для получения значительной прибыли от любого крупного движения, т.е. оседлать волну и держаться на ней до нужного момента. Впрочем, удержаться на гребне волны — не самое главное, если стратегия выхода сочетается с формулой входа, позволяющей вернуться в протяженный тренд или другое крупное движение рынка.

В реальности практически невозможно и, несомненно, необоснованно обсуждать входы и выходы по отдельности. Для тестирования торговой системы должны использоваться и входы, и выходы, чтобы осуществлялись полные циклы. Как можно получить завершенные сделки для оценки эффективности, если из рынка не выходить? Методы входа и выхода необходимы для системы, которую можно тестировать. Однако следует иметь ряд стратегий входа и проверить их вне зависимости от выходов и таким же образом испытать ряд стратегий выхода вне зависимости от входа. В общем желательно изменять как можно меньше параметров за раз и измерять эффект этих манипуляций, при этом игнорируя или не трогая другие показатели. Разве не в этом состоит научный подход, хорошо себя зарекомендовавший в других отраслях? Но можно ли достичь такой изоляции и контроля в исследовании входов и выходов по отдельности?

Научный подход к разработке систем

Эта книга предназначена для систематического и подробного анализа индивидуальных компонентов, составляющих полную торговую систему. Мы предлагаем научное исследование входов, выходов и других элементов торговой системы. Основная сущность научного подхода в этом аспекте такова:

  1. Объект исследования, в данном случае торговая система или ее составляющие, должен быть доступен для прямого или опосредованного наблюдения предпочтительно без зависимости от субъективных суждений, что в некоторых случаях легко достижимо при помощи соответствующих программ тестирования полностью механических торговых систем.
  2. Требуется упорядоченная методика оценки поведения исследуемых показателей, т.е. в случае торговых систем — тестирование на длительных выборках исторических данных совместно с использованием статистической обработки данных для оценки способности системы эффективно действовать в будущем и на других выборках данных.
  3. Требуется метод ограничения объема вычислений, состоящий в фиксации большинства параметров при концентрации внимания на эффектах, возникающих от изменения одного-двух критических параметров в каждом тесте.

Структура этой книги во многом отражает научный подход. Системы разделены на модели входов и выходов, для их исследования обсуждаются и применяются стандартизованные методы, образуя отдельные разделы по входам и выходам. Проводятся объективные исследования и статистическая обработка данных. Результаты представлены последовательным образом, позволяющим проводить прямые сравнения. Для ученого, исследователя в любой отрасли в этом нет ничего нового.

Для многих трейдеров может оказаться сюрпризом, что они, подобно исследователям, также имеют работающий научный подход! Книги для трейдеров часто упоминают «торговлю на бумаге» или историческое обратное тестирование, а также приводят результаты, основанные на этих методах. Впрочем, эта книга будет более последовательна в применении научного подхода к успешной торговле на рынках. Например, немногие из книг, упоминающих историческое тестирование торговых систем, основывают заключения на статистическом анализе вероятности будущих прибылей и статистическом подтверждении достоверности результатов тестов. Эта книга включает подробное пособие по применению статистики для оценки эффективности торговых систем.

Также следует отметить, что немногие авторы проводят тестирование входов и выходов независимо друг от друга. Существует ряд интересных способов, позволяющих проводить тестирование изолированных компонентов системы. Один из них — использование набора стандартных стратегий входа и выхода, которые остаются фиксированными, в то время как данный вход, выход или другой компонент меняется. Например, при изучении моделей входа используется стандартизованная модель выхода без изменений для различных входов и их модификаций, и таким же образом для изучения выходов будет использоваться стандартизованная модель входа. Для трейдера будет немалым шоком использование для исследования входов генератора случайных чисел, спонтанно открывающего длинные и короткие позиции на различных рынках! Большинство трейдеров впали бы в панику от одной мысли о модели, основанной на выпадении кубиков, но на самом деле такие входы великолепны для жесткого тестирования стратегий выхода. Стратегия, способная выжать прибыль из случайных сделок, как ни странно, вполне может быть разработана, по крайней мере для индекса S&P 500 (Katz and McCormick, March, 1998, April, 1998). Испытания следует проводить так, чтобы разные методы входа и выхода можно было осмысленно сравнивать.

В общем, основные элементы научного подхода включают:

  1. Изолированные исследования различных элементов системы.
  2. Использование стандартных методик, позволяющих проводить достоверные сравнения.
  3. Статистическую оценку результатов.

Материалы и методы, необходимые для научного подхода

Прежде чем применять научный подход к изучению рынков, следует рассмотреть ряд факторов. Прежде всего, требуется целая вселенная достоверных данных для исторического тестирования и статистического анализа. Поскольку эта книга концентрируется на товарных биржах, в основе использованы данные по ценам на конец дня, поставляемые Pinnacle Data Corporation, которые включают сельскохозяйственные продукты, металлы, энергетические ресурсы, облигации, валюты и рыночные индексы. В книге не рассматривается внутридневная торговля, хотя это одна из основных областей наших интересов, которая, возможно, станет темой следующей книги. Помимо стандартных ценовых данных исследование влияния различных внешних факторов на рынок может потребовать весьма необычных данных. Например, данные об активности солнечных пятен (солнечное излучение влияет на ряд рынков, в частности на сельскохозяйственный) получены от Бельгийской королевской обсерватории.

Мало иметь огромное количество данных — необходимо моделирование одного или нескольких торговых счетов для проведения тестов. Для этого требуется торговый симулятор, т.е. пакет программ для создания счетов и ведения торговли на компьютере. Наиболее широко использовался торговый симулятор от Scientific Consultant Services, написанный на языке С++, рассчитанный на работу с портфелями акций и хорошо известный авторам. Кроме того, разнообразные возможности тестирования и построения графиков заложены в такие программы, как TradeStation фирмы Omega Research или SystemWriter Plus. Мы использовали в нашем анализе не только эти программы, но и MS Excel, которой пользуются очень многие.

Еще один важный момент — оптимизация параметров моделей. При проведении тестов часто необходимо настраивать параметры некоторых компонентов (например, модели входа, выхода или их частей), чтобы обнаружить наилучший набор параметров и/или увидеть, как поведение модели меняется со сменой параметров. Возможно проведение нескольких видов оптимизации параметров модели. При ручной оптимизации пользователь задает параметр, который будет варьироваться, и пределы его изменения; причем пользователь может одновременно управлять двумя или более параметрами, получая результаты в виде таблицы, показывающий влияние значений параметров на показатели системы. Другой метод — лобовая оптимизация, существующая в нескольких разновидностях: наиболее часто это прогонка каждого из параметров через все возможные значения. Если параметров много и их границы широки, прогонка может растянуться на годы. При этом лобовая оптимизация может быть вполне приемлема при малом количестве параметров и узких пределах их значений. Другие методы лобовой оптимизации не столь полны и не всегда способны найти оптимальный набор параметров, но работают гораздо быстрее. Последний из методов, используемый для мощной оптимизации (а в неумелых руках — для подгонки параметров под выигрыш в прошлом), — это генетические алгоритмы. Подходящий генетический алгоритм может быстро обнаружить хороший ответ (пусть даже не общий оптимум) даже из большого числа параметров с широкими пределами значений. Генетический оптимизатор — важный инструмент в арсенале разработчика торговых систем, но использоваться он должен осторожно, поскольку существует возможность «подгонки», т.е. получения набора параметров, «подогнанного» под исторические данные, который имеет небольшую ценность для торговли в будущем. В данной книге приведены методики статистической оценки результатов, тесты за пределами выборки и методики, фокусирующиеся на анализе целых портфелей, которые обеспечивают защиту от «подгонки» вне зависимости от используемого метода оптимизации.

Джеффри Оуэн Кац
и Донна Л. Маккормик

Часть I 

Рабочие инструменты

Введение

Для объективной оценки поведения механических торговых систем требуются различные аналитические инструменты и данные.

Для моделирования поведения некоторого метода входа или выхода требуется проведение тестов с использованием этого метода на данных о прошлом поведении рынка. Следовательно, для начала требуются чистые, надежные исторические данные.

При наличии данных нужна программа для моделирования торгового счета. Такие программы позволяют давать различные торговые приказы и должны эмулировать торговлю с реального счета за интересующий нас исторический период. Такие программы называются торговыми симуляторами.

Модель (будь то модель входа, выхода или полная система) может иметь ряд параметров, которые необходимо настраивать для достижения наилучшей отдачи от системы и ее элементов, или ряд опций, которые можно включать или отключать. Для определения оптимальной конфигурации системы используется оптимизатор, и его надо выбрать среди разнообразия существующих видов оптимизаторов.

Моделирование и оптимизация дают огромное количество результатов. Система может провести сотни тысяч тестов, каждый со своим показателем прибыли/убытков, максимального благоприятного и неблагоприятного движения. Кроме того, будут построены графики изменения общего капитала, соотношения риска/прибыли, доходности и других показателей моделируемого торгового счета. Необходим подход к оценке значимости этих результатов. Является ли высокая доходность результатом излишней оптимизации? Может ли система быть прибыльной чисто случайно или дело в достоверной торговой стратегии? Если система обоснованна, будет ли она столь же успешна в будущем при реальной торговле, как и в прошлом? Ответы на такие вопросы достижимы при помощи статистических методов.

В следующих главах будут рассмотрены данные, симуляторы, оптимизаторы и статистика. Эти понятия будут использоваться в дальнейшем при исследовании методов входа и выхода и при попытке объединить входы и выходы в полную торговую систему.

Глава 1 

Данные

В области торговли на товарной бирже нельзя сделать заключение о работоспособности или непригодности того или иного метода или системы без качественных данных для тестов и симуляций. Для разработки выгодной торговой системы трейдеру могут потребоваться несколько видов данных; как минимум необходимы исторические ценовые данные по интересующим видам товаров.

Виды данных

Исторические ценовые данные по фьючерсным рынкам поставляются как для индивидуальных контрактов, так и для непрерывных фьючерсов. Данные по индивидуальным контрактам — это ценовая история отдельных фьючерсных контрактов. На фьючерсных рынках в каждый момент времени могут проходить торги по нескольким контрактам. Большинство спекулянтов на бирже торгует контрактами на ближайший месяц — наиболее ликвидными и близкими к исполнению, но еще не прошедшими дату первого уведомления. Когда каждый из контрактов приближается к истечению или проходит дата первого уведомления, трейдер «переносит» любую открытую позицию в следующий контракт. Таким образом, использование индивидуальных контрактов может значительно усложнить тесты. Необходимо учитывать не только сделки, создаваемые системой, но и переводы позиций и выбор соответствующих контрактов.

Для упрощения системы и тестирования были изобретены непрерывные фьючерсы, состоящие из индивидуальных контрактов, связанных в непрерывную последовательность. При истечении старого контракта и открытии нового производится несложная обработка данных, закрывающая ценовые разрывы между двумя контрактами. Простая обратная настройка, видимо, является самым осмысленным и популярным методом закрытия разрывов (Schwager, 1992). Она проводится с помощью вычитания из ценовых данных постоянного числа, что позволяет сохранить все линейные отношения (изменения цены со временем, уровни волатильности, торговые диапазоны). Моделирование торговой активности, проводимое с использованием обратной настройки, зачастую требует только коррекции стоимости переноса позиции при обработке полученных результатов. После этой коррекции полученные при моделировании данные будут идентичны показателям, которые были бы получены при использовании индивидуальных контрактов. Впрочем, поскольку торговые решения зависят от абсолютных ценовых уровней, процентных или других соотношений цен, то для проведения тестов будут необходимы дополнительные серии данных (помимо постоянных контрактов с обратной настройкой).

Данные о ценах на конец дня как для индивидуальных, так и для постоянных контрактов представляют собой серию дневных котировок. Каждая котировка, каждый день или точка данных обычно включают семь показателей: дата, цена открытия, максимальная цена, минимальная цена, цена закрытия, объем и открытый интерес. Объем и открытый интерес обычно не сообщаются до закрытия следующего дня. Поэтому при тестировании торговых методов, основанных только на исторических значениях этих показателей, можно получить великолепную, но совершенно неработоспособную систему! Цены открытия и закрытия (или расчетная цена), максимальная и минимальная цены публикуются каждый день вскоре после закрытия рынка.

Внутридневные ценовые данные состоят из последовательности баров, каждый их которых отражает фиксированный временной интервал, или из индивидуальных тиков. Показатели точки данных включают дату, время, цену открытия, максимальную цену, минимальную цену, цену закрытия и тиковый объем. Тиковый объем отличается от объема дневных торгов: для внутридневных данных — это количество тиков, происходящих в пределах бара, вне зависимости от количества контрактов или сделок в каждом из этих тиков. Для индивидуальных тиков сообщается только дата, время и цена, но не объем. Внутридневные тиковые данные могут быть легко конвертированы в данные с фиксированным временным интервалом при помощи доступных программ, которые часто предоставляются поставщиком данных без дополнительной оплаты.

Кроме данных о ценах товаров существуют другие ценные данные. Например, долговременные данные об активности солнечных пятен, полученные из Бельгийской королевской обсерватории, использованные в главах о влиянии Солнца и Луны. Изменения температуры и осадков оказывают влияние на рынок сельскохозяйственных продуктов. Различные данные из самых разных областей экономики — от уровня инфляции до цен на жилье — могут помочь в успешной торговле на товарной бирже. Не забывайте просматривать сводки, отражающие настроения участников рынка, такие как обзоры «Взгляды трейдеров» (Commitment of Traders), опросы, отражающие преобладание бычьих или медвежьих настроений, соотношения опционов пут и колл. Кроме того, при тестировании систем можно использовать и нечисленные данные, например новости в прессе. Поиск необычных данных часто открывает интересные и выгодные возможности — зачастую, чем более необычны и труднодоступны данные, тем они ценнее!

Временные масштабы данных

Данные могут использоваться в своих естественных временных рамках или пересчитываться в другой масштаб. В зависимости от используемого масштаба при торговле и особенностей торговой системы могут потребоваться тиковые, 5- и 20-минутные, часовые, недельные, двухнедельные, месячные, квартальные и даже годовые данные. Обычно источник данных имеет естественные временные ограничения; для внутридневных данных — это тик. Тик не является постоянной единицей времени: иногда тики бывают очень частыми, иногда спорадическими с длинными интервалами между ними. День — естественная единица шкалы для дневных данных. Для некоторых других данных естественный масштаб может быть двухмесячным, как, например, для сводок обзоров «Взгляды трейдеров», или квартальным, как бывает с отчетами о прибыли компаний.

Хотя от длинных временных периодов нельзя перейти к коротким (нельзя создать отсутствующие данные), обратный переход легко достижим при соответствующей обработке. Например, несложно создать серию 1-минутных штрихов на основе тиков. Конверсия обычно проводится автоматически при использовании аналитических программ или графических пакетов, а также при помощи особых утилит, часто предоставляемых поставщиком данных. Если данные скачиваются из Интернета по протоколу ftp или при помощи стандартного броузера, может потребоваться небольшая дополнительная программа или скрипт для перевода скачиваемых данных в желаемый формат и сохранения в приемлемом для других программ формате.

Какой временной масштаб лучше? Это зависит от трейдера. Для тех, кто предпочитает быструю обратную связь, частые сделки, близкие защитные остановки и ежедневную фиксацию прибыли, идеальный выбор — внутридневной масштаб. Чем больше сделок, тем быстрее трейдер учится и выбирает наиболее приемлемые для него торговые методы. Кроме того, при ежедневном закрытии всех позиций вечером трейдер может полностью избежать риска изменений рынка за ночь. Еще одна полезная характеристика краткосрочной торговли — возможность использовать близкие защитные остановки, снижая убытки при неудачных сделках. В конце концов любители статистики будут очарованы представительными выборками данных, содержащими сотни тысяч показателей и тысячи сделок, которые легко накопить при использовании коротких временных масштабов. Большие выборки снижают риск подгонки системы под прошлые данные, дают более стабильные статистические результаты и увеличивают вероятность того, что прогностические модели будут работа…