Наука о данных. Базовый курс

Джон Келлехер, Брендан Тирни

Подробнее

Издательство: «Альпина Диджитал»

Возрастное ограничение: 12+

Жанр: Учебная литература

Фрагмент книги «Наука о данных. Базовый курс»

Глава 1 очерчивает область науки о данных и дает краткую историю ее становления и эволюции. В ней мы также рассмотрим, почему наука о данных стала такой востребованной сегодня, и перечислим факторы, стимулирующие ее внедрение. В конце главы мы развенчаем несколько мифов, связанных с темой книги. Глава 2 вводит фундаментальные понятия, относящиеся к данным. В ней также описаны стандартные этапы проекта: понимание бизнес-целей, начальное изучение данных, подготовка данных, моделирование, оценка и внедрение. Глава 3 посвящена инфраструктуре данных и проблемам, связанным с большими данными и их интеграцией из нескольких источников. Одна из таких типичных проблем заключается в том, что данные в базах и хранилищах находятся на одних серверах, а анализируются на других. Поэтому колоссальное время тратится на перемещение больших наборов данных между этими серверами. Глава 3 начинается с описания типичной инфраструктуры науки о данных для организации и некоторых свежих решений проблемы перемещения больших наборов данных, а именно: метода машинного обучения в базе данных, использования Hadoop для хранения и обработки данных, а также разработки гибридных систем, в которых органично сочетаются традиционное программное обеспечение баз данных и решения, подобные Hadoop. Глава завершается описанием проблем, связанных с интеграцией данных в единое представление для последующего машинного обучения. Глава 4 знакомит читателя с машинным обучением и объясняет некоторые из наиболее популярных алгоритмов и моделей, включая нейронные сети, глубокое обучение и деревья решений. В главе 5 основное внимание уделяется использованию опыта в области машинного обучения для решения реальных задач, приводятся примеры анализа стандартных бизнес-проблем и того, как они могут быть решены с помощью машинного обучения. В главе 6 рассматриваются этические вопросы науки о данных, последние разработки в области регулирования и некоторые из новых вычислительных методов защиты конфиденциальности в процессе обработки данных. Наконец, в главе 7 описаны сферы, на которые наука о данных окажет наибольшее влияние в ближайшем будущем, изложены принципы, позволяющие определить, будет ли данный конкретный проект успешным.

Читай без интернета

Любимые книги всегда доступны для чтения без доступа к интернету. Для этого всего лишь нужно загрузить книгу на устройство.

Мы в Telegram

@patephoneapp