Красота физики: Постигая устройство природы
Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).
Эту работу выполнил специально для «Красоты физики» Хэ Шуйфа, современный мастер традиционного китайского искусства и каллиграфии, известный энергией и нежностью своей кисти и духовной глубиной образов природы, цветов и птиц. Перевод надписи звучит примерно так: «Двойная рыбка тайцзи — это сущность китайской культуры. Этот рисунок выполнил Хэ Шуйфа у озера в начале зимы».
Две играющие рыбки символа тайцзи оживают на рисунке Хэ Шуйфа. Инь и ян напоминают двух карпов, играющих вместе, и мы можем видеть их глаза и даже угадать намеки на плавники. В Хэнани, на Желтой реке, есть водопад «Ворота нефритового дракона», или «Юйлун Мэнь». Карпы пытаются перепрыгнуть порог, хотя им это очень трудно сделать, и те, кому удается, превращаются в счастливых драконов. С некоторой долей юмора мы можем соотнести это событие с превращением виртуальной частицы в реальную. Это очень важный квантовый процесс, который, как мы сейчас полагаем, лежит в основе структуры Вселенной (см. цветные вклейки XX и AAA). Мы также можем увидеть в этих карпах себя и в их упорстве — наше стремление к истине и поиск понимания.
Моей семье и друзьям
Руководство пользователя
- «Временные ряды» по большей части концентрируются на событиях, затронутых или упомянутых в книге. Они для того, для чего обычно бывают временные ряды (хронология событий). Они не должны быть и не являются полной историей чего-либо.
- Раздел «Термины» содержит определения, объяснения и обсуждения ключевых терминов и понятий, встречающихся в основном тексте. Как вы можете догадаться по его размеру, это больше, чем просто глоссарий. Он включает альтернативный взгляд на многие идеи в тексте, а некоторые из них развивает в других направлениях.
- Раздел «Примечания» содержит материал, который мог бы в случае научной книги или статьи помещаться в подстрочных примечаниях. Он одновременно уточняет текст и содержит дополнительные технические ссылки по некоторым вопросам. Также в этом разделе вы найдете пару стихотворений.
- Короткий раздел «Рекомендуемая литература» — это не банальный список научно-популярных книг или учебников, а тщательно подобранный набор рекомендаций для дальнейших изысканий в духе книги, с упором на первоисточники.
Я надеюсь, вы уже насладились оформлением обложки и фронтисписом, которые превосходно задают тон нашей медитации.
Также есть «Руководство пользователя», но это вы и так знаете.
Вопрос
Эта книга — длинная медитация, или размышление, над одним-единственным вопросом:
«Воплощает ли наш мир красивые идеи?»
Наш Вопрос может показаться странным. Идеи — это одно, а физические тела — совсем другое[1]. Что значит «воплощать» в применении к «идее»?
Воплощение идей — задача творческих людей. Начиная с призрачных замыслов, художники создают физические объекты (или квазифизические произведения, такие как музыкальные партитуры, которые затем преобразуются в звуки). Значит, наш Вопрос близок к следующему:
«Является ли мир произведением искусства?»
Поставленный таким образом, наш Вопрос приводит нас к другим вопросам. Если мир можно считать произведением искусства, хорошо ли удалось это произведение? Красив ли наш физический мир, если считать его произведением искусства? Для познания нашего физического мира мы призываем на помощь работы ученых, но, чтобы отдать должное нашим вопросам, мы также должны обратиться к проницательности и достижениям художников-импрессионистов.
Духовная космология
Наш Вопрос выглядит наиболее естественным в рамках духовной космологии. Если сильный и могущественный Творец создал мир, возможно что Им — или Ею, или Ими, или Этим — руководило именно желание создать что-то красивое. Эта идея представляется естественной, но, несомненно, не является общепринятой для большинства религиозных традиций. Создателю приписывали множество мотивов, но редко можно заметить среди них творческие амбиции.
В авраамических религиях общепринятой доктриной считается, что Творец намеревался воплотить некоторую смесь добродетели и праведности, а также создать памятник своему великолепию. Анимистические и политеистические религии предусматривают наличие существ и богов, которые создают разные части физического мира и управляют ими по самым разнообразным причинам — от благожелательности до похоти и до беззаботного восторга.
В теологии более высокого уровня иногда говорят, что мотивы Создателя настолько грандиозны, что ограниченный человеческий интеллект не может надеяться их постичь. Вместо этого нам даны частичные откровения, в которые надо верить, а не понимать. Или, возможно, Бог — это Любовь. Ни одна из этих общепринятых теорий, противоречащих друг другу, не предлагает убедительных причин, чтобы ожидать, что мир воплощает красивые идеи; так же они и не предполагают, что нам следует стремиться обнаружить такие идеи. Красота может быть частью их истории создании мира, но обычно это побочная часть вопроса, а не его суть.
Тем не менее многие творческие личности находили вдохновение в идее о том, что Создатель мог быть, кроме всего прочего, художником, чьи эстетические мотивы мы способны понять и разделить, — или даже в дерзком предположении, что Создатель — главным образом художник. Такие личности затрагивали наш Вопрос в его разнообразных и меняющихся формах в течение многих веков. Вдохновленные этим, они создали глубокую философию, великие науки, выдающиеся литературные произведения и поразительные скульптуры. Некоторые создали произведения, в которых сочетается несколько перечисленных свойств или даже все. Эти работы — золотая жила, проходящая через всю нашу цивилизацию.
Галилео Галилей положил красоту физического мира в основу своей собственной глубокой веры и всем ее рекомендовал:
Величие и торжество Бога изумительно сияет во всех Его творениях, и именно оно читается прежде всего в раскрытой книге небес.
…И так же поступили Иоганн Кеплер, Исаак Ньютон и Джеймс Клерк Максвелл. Для всех этих исследователей найти красоту, воплощенную в физическом мире, отражающую величие Бога, было целью поисков. Это вдохновляло их работу и освящало их любознательность. И благодаря их открытиям их вера вознаграждалась.
В то время как наш Вопрос находит поддержку в духовной космологии, он заслуживает внимания и сам по себе. И хотя положительный ответ может внушить божественную интерпретацию, она не обязательна.
Мы вернемся к этим мыслям к концу нашей медитации, и к тому времени мы будем гораздо лучше подготовлены, чтобы оценить их. А пока пусть мир говорит сам за себя.
Героические приключения
Как у искусства, так и у представления о мире как о произведении искусства есть история и развивающиеся стандарты. В истории искусства мы привыкли к идее о том, что уже созданные направления не устаревают: принадлежащие к ним произведения по-прежнему приносят наслаждение, а кроме того, предлагают важный контекст для дальнейшего развития. Хотя эта идея куда менее распространена в науке, где у нее имеются значительные ограничения, исторический подход к нашему Вопросу имеет много преимуществ. Он позволяет нам — более того, заставляет нас — идти от простых идей к более сложным. В то же время, исследуя, как великие мыслители боролись за истину и зачастую сбивались с пути, мы можем понять, как первоначальная «странность» идей стала — через привычку — слишком «очевидной» и удобной. И последнее, хотя ни в коем случае не наименее важное: мы, люди, особенно хорошо приспособлены воспринимать информацию в форме историй и рассказов, ассоциировать идеи с именами и лицами, а также находить захватывающими рассказы о конфликтах и об их разрешении, даже если это конфликт идей и всё обходится без кровопролития. (На самом деле не всегда…)
По этой причине мы для начала споем песнь героям: Пифагору, Платону, Филиппо Брунеллески, Ньютону, Максвеллу. (Далее появится и главная героиня, Эмми Нётер.) Этими именами назывались реально существовавшие — и очень интересные! — люди. Но для нас они не просто люди, но также легенды и символы. Я описал их такими, как я думаю о них, таким образом делая акцент на ясность и простоту в ущерб научной точности в мелочах. Здесь биография — это средство, а не цель. Каждый герой продвигает вперед нашу медитацию на несколько шагов:
- Пифагор в своей известной теореме о прямоугольных треугольниках открыл наиболее фундаментальные связи между числами, с одной стороны, и размерами и формами — с другой. Так как Число — это чистейший плод Разума, в то время как Размер — это простейшая характеристика Материи, то это открытие обнаружило скрытое единство между Разумом и Материей.
Пифагор также открыл в законах о струнных инструментах простую и удивительную связь между числами и музыкальной гармонией. Это открытие завершает троицу Разум — Материя — Красота с Числом в роли связующей нити. Впечатляюще! Это привело Пифагора к догадке о том, что «Число есть сущность всех вещей». С этими открытиями и предположениями наш Вопрос обретает жизнь.
- Платон думал грандиозно. Он предложил геометрическую теорию атомов и Вселенной, основанную на пяти симметричных формах, которые мы сегодня называем платоновыми телами. В своей дерзкой модели физической реальности Платон больше ценил красоту, чем точность. Подробности его теории были безнадежно неверными. И все же она дала увидеть такой ослепительный образ того, каким может быть ответ на наш Вопрос, что это вдохновляло Евклида, Кеплера и многих других на блестящие работы в течение веков спустя. Действительно, наши современные, изумительно успешные теории элементарных частиц, систематизированные в Главной теории (см. ниже), основаны на возвышенных идеях симметрии, которые обязательно заставили бы Платона радостно улыбнуться. И когда я пытаюсь угадать, что же будет дальше, я часто следую стратегии Платона, предлагая объекты, обладающие математической красотой, в качестве моделей Природы.
Платон был также великим писателем. Его метафора Пещеры ухватила суть важных эмоциональных и философских аспектов наших отношений как исследователей с действительностью. В ее основе — вера в то, что повседневная жизнь предлагает нам всего лишь тень реальности, но что через смелость мысли и развитие способности чувствовать мы можем проникнуть в ее суть — и что эта суть яснее и прекраснее, чем ее тень. Он придумал посредника — демиурга, что можно перевести как мастер, который воплощал мир безупречных, вечных Идей в его несовершенную копию — мир, в котором мы живем. Здесь понятие о мире как о произведении искусства выражено явным образом.
- Брунеллески привнес новые идеи в геометрию для нужд искусства и инженерного дела. Его проективная геометрия, которая имеет дело с реальным обликом вещей, принесла с собой идеи — об относительности, инвариантности, симметрии — не только красивые сами по себе, но и открывающие новые возможности.
- Ньютон вывел математическое понимание Природы на совершенно новый уровень притязаний и точности.
Общая идея пронизывает титаническую работу Ньютона над светом, математическим исчислением, движением и механикой. Это метод, который он называл Анализ и Синтез. Метод анализа и синтеза предлагает двухступенчатую стратегию для достижения понимания. В стадии анализа мы рассматриваем мельчайшие части того, что мы изучаем, — его «атомы» — в метафорическом смысле этого слова. В случае удачного анализа мы определяем малые части с простыми свойствами, которые можно резюмировать в виде точных законов. Например:
- в изучении света атомы — это лучи чистых спектральных цветов;
- в изучении исчисления атомы — это бесконечно малые и их отношения:
- в изучении движения атомы — это скорость и ускорение;
- в изучении механики атомы — это силы.
(Мы подробнее обсудим все это позже.) В стадии синтеза мы переходим с помощью логических и математических доводов от поведения отдельных атомов к описанию систем, которые содержат множество атомов.
Описанный в таком общем виде, ньютоновский Анализ и Синтез не выглядит слишком впечатляюще. В конце концов, он близок к обычным практическим методам, например, «чтобы решить сложную проблему, разделяй и властвуй» — а это едва ли возбуждающее открытие. Но Ньютон потребовал точности и полноты понимания, говоря:
Гораздо лучше сделать немного, но наверняка, а остальное оставить для других, которые придут после вас, чем объяснять все вещи с помощью гипотез, не будучи уверенным ни в чем до конца.
И в этих впечатляющих примерах он достиг своих целей. Ньютон убедительно показал, что Природа сама идет по пути анализа и синтеза. В «атомах» действительно есть простота, и Природа действительно функционирует, позволяя им делать свое дело.
Ньютон также в своей работе о движении и механике обогатил наше представление о том, что такое физические законы. Его законы движения и гравитации — это динамические законы. Другими словами, это законы изменения. Такие законы воплощают идею красоты, отличную от статического совершенства, которое так любили Пифагор и (особенно) Платон.
Динамическая красота выходит за пределы отдельных предметов и явлений и призывает нас постичь широту возможностей. Например, размеры и формы настоящих орбит планет не просты. Они не являются ни (усложненными) окружностями Аристотеля, Птолемея или Николая Коперника, ни даже почти правильными эллипсами Кеплера — это скорее кривые, которые нужно вычислять как функции времени, изменяющиеся сложным образом в зависимости от положений и масс Солнца и остальных планет. В этом есть восхитительная красота и простота, но это полностью очевидно только тогда, когда мы понимаем внутреннее устройство. Видимые проявления отдельных предметов не исчерпывают красоту законов.
- Максвелл был первым по-настоящему современным физиком. Его работа по электромагнетизму возвестила одновременно новое представление о реальности и новый метод в физике. Новое представление, которое Максвелл развил из догадок Майкла Фарадея, состоит в том, что элементарные составляющие физической реальности — это не точечные частицы, а скорее наполняющие пространство поля. Новый метод — это метод вдохновленных догадок (inspired guesswork). В 1864 г. Максвелл кратко записал известные законы электричества и магнетизма в виде системы уравнений, но понял, что полученная система противоречива. Как и Платон, который подогнал пять идеальных тел под четыре элемента и Вселенную, Максвелл не сдался. Он заметил, что если добавить еще одно слагаемое, то уравнения можно сделать одновременно более симметричными и математически непротиворечивыми. Полученная система, известная под названием уравнений Максвелла, не только объединила электричество и магнетизм, но и имела следствием описание света, и она дожила до наших дней в качестве надежных обоснований этих явлений.
Чем же воодушевляются «вдохновленные догадки» физика? Логическая непротиворечивость необходима, но едва ли достаточна. Скорее Максвелла и его последователей — т.е. всех современных физиков — подвели ближе к истине красота и симметрия, как мы далее увидим.
Максвелл в работе по восприятию света также открыл, что аллегорическая Пещера Платона отражает нечто довольно реальное и конкретное: ничтожность нашего чувственного восприятия по сравнению с доступной реальностью. И его работа, проливая свет на границы восприятия, позволяет нам выйти за эти границы. Ведь лучшее средство для развития чувственных способностей — это ищущий ум.
КВАНТОВОЕ ЗАВЕРШЕНИЕ
Решительное «да» на наш Вопрос прозвучало только в XX в., когда была разработана квантовая теория.
Квантовая революция привела к такому открытию: мы наконец узнали, что такое Материя. Необходимые уравнения являются частью теоретической структуры, которую часто называют Стандартной моделью. Такое наводящее зевоту название едва ли отдает должное этому достижению, и я продолжу свою кампанию, начатую в «Легкости бытия[2]», по его замене на кое-что более подходящее и потрясающее:
Стандартная модель → Главная теория.
Это изменение более чем оправданно, и вот почему.
1. «Модель» ассоциируется с временным суррогатом, который ждет замена на «настоящую вещь». Но Главная теория уже является точным представлением физической реальности, которое любая будущая гипотетическая «настоящая вещь» должна принимать во внимание.
2. «Стандартная» ассоциируется с «общепринятой» и намекает на наличие какого-то высшего знания. Но такого высшего знания нет. На самом деле я думаю — и тому есть горы свидетельств, — что, хотя Главная теория будет дополнена, ее сердцевина останется прежней.
Главная теория воплощает красивые идеи. Уравнения для атомов и света почти буквально совпадают с уравнениями, которым подчиняются музыкальные инструменты и звук. Горстка изящных схем лежит в основе богатого разнообразия устройства Природы, начиная с простых структурных компонентов материального мира.
Наши Главные теории четырех взаимодействий в Природе — гравитации, электромагнетизма, сильного и слабого взаимодействий — воплощают по своей сути общий принцип: локальную симметрию. Как вы прочитаете далее, этот принцип одновременно осуществляет чаяния Пифагора и Платона о гармонии и понятийной чистоте, а также выходит за их пределы. Как вы увидите, этот принцип строится на художественной геометрии Брунеллески и блестящих озарениях Ньютона и Максвелла о природе света, и в то же время он выходит за их рамки.
Главная теория завершает анализ материи для практических целей. Используя ее, мы можем сделать вывод о том, какие виды атомных ядер, атомов, молекул — и звезд — могут существовать. И мы можем надежно управлять поведением более крупных скоплений этих элементов, чтобы создавать транзисторы, лазеры или Большие адронные коллайдеры. Уравнения Главной теории проверены с гораздо большей точностью и при гораздо более экстремальных условиях, чем это нужно для их применения в химии, биологии, инженерном деле или астрофизике. Хотя, конечно, существуют вещи, которых мы не понимаем, — и совсем скоро я упомяну несколько важных из них — мы действительно понимаем устройство Материи, из которой мы состоим и с которой сталкиваемся в обычной жизни (даже если мы химики, инженеры или астрофизики).
Несмотря на свои огромные достоинства, Главная теория не идеальна. Действительно, именно потому, что это описание реальности настолько верно, мы должны в поисках ответа на наш Вопрос оставаться на самом высоком эстетическом уровне. Если пристально рассмотреть Главную теорию, в ней обнаруживаются недостатки. Ее уравнения кривобоки, и они содержат несколько мало связанных друг с другом кусков. Больше того, Главная теория не объясняет существования так называемых темной материи и темной энергии. Хотя этими неуловимыми формами материи можно пренебречь при рассмотрении нашего ближайшего окружения, они занимают прочные позиции в межзвездном и межгалактическом пространстве и потому оказываются преобладающими в общей массе Вселенной. По этой и другим причинам мы не можем оставаться удовлетворенными.
Попробовав вкус красоты в сердце мира, мы жаждем большего. В этих поисках, я думаю, нет более многообещающего проводника, чем сама красота. Я дам вам некоторые подсказки, которые наводят на мысль о конкретных возможностях улучшения нашего описания Природы. Так как я стремлюсь к вдохновленным догадкам, в красоте мое воодушевление. Как вы увидите ниже, для меня это уже несколько раз сработало.
РАЗНОВИДНОСТИ КРАСОТЫ
У разных художников разные стили. Мы не ожидаем найти приглушенные цвета Ренуара в мистическом полумраке Рембрандта или утонченность Рафаэля у любого из двух предыдущих. Музыка Моцарта пришла из совершенно иного мира, чем музыка The Beatles, а музыка Луи Армстронга — еще из третьего. Точно так же красота, воплощенная в физическом мире, — это особый вид красоты. Природа как художник имеет свой особый стиль.
Чтобы оценить по достоинству искусство Природы, мы должны проникнуть в ее стиль с пониманием. Галилей выразил это, как всегда красноречиво, следующим образом:
Философия [Природа] описана в этой великой книге, которая всегда находится у нас перед глазами — я имею в виду Вселенную, — но мы не можем понять ее, если мы не выучим сначала ее язык и не поймем ее символов, с помощью которых она написана. Эта книга написана математическим языком, и ее символы — это треугольники, круги и другие геометрические фигуры, без помощи которых невозможно понять в ней ни одного слова; без которых будешь тщетно бродить по темному лабиринту.
Сегодня мы гораздо дальше проникли в суть этой великой книги и открыли, что ее позднейшие главы используют более изобретательный и менее привычный язык, чем евклидова геометрия, которую знал Галилей. Чтобы начать бегло на нем разговаривать, потребуется целая жизнь (или, по крайней мере, несколько лет магистратуры и/или аспирантуры). Но так же, как диплом по истории искусств не является необходимым условием для того, чтобы заинтересоваться мировым искусством и найти этот опыт очень приятным, так и я надеюсь этой книгой помочь вам увлечься искусством Природы, сделав стиль последней доступным для вас. Ваши усилия будут вознаграждены, ибо, как мог бы сказать Эйнштейн:
Природа изощрена, но не злонамеренна.
Две навязчивые идеи являются характерными для стиля Природы:
- Симметрия — любовь к гармонии, равновесию и пропорциональности.
- Экономия — удовольствие от создания большого разнообразия явлений очень ограниченным числом способов.
Наблюдайте за тем, как повторяются, ширятся и развиваются эти мотивы сквозь весь наш рассказ и дают ему единство. Восприятие этих идей происходило интуитивно, часто принятием желаемого за действительное, однако привело к созданию точных, действенных и плодотворных методов познания.
Теперь нужна небольшая оговорка. Многие разновидности красоты плохо представлены в стиле Природы в смысле выраженности в ее фундаментальной операционной системе. Наше восхищение человеческим телом и наша увлеченность выразительными портретами, наша любовь к животным и к природным ландшафтам — и многие другие источники художественной красоты — наукой не задействованы. Но наука это не всё, что есть на свете, слава богу.
ПОНЯТИЯ И РЕАЛЬНОСТИ; РАЗУМ И МАТЕРИЯ
Наш Вопрос можно понимать двояко. Наиболее очевидно, что он является вопросом о мире. Это то значение, на которое мы делали упор до настоящего момента. Но и второе значение столь же завораживающее. Когда мы обнаруживаем, что наше чувство прекрасного осуществляется в физическом мире, мы узнаем что-то о мире, но также мы узнаем кое-что о себе.
Понимание человеком фундаментальных законов Природы — достижение недавнее по эволюционным или даже историческим меркам. Кроме того, эти законы открываются нам только в результате тщательно продуманных экспериментов: использования совершенных микроскопов и телескопов, деления атомов и ядер, а также обработки длинных цепочек математических умозаключений. Все это само по себе не приходит. Наше чувство прекрасного никак напрямую не приспособлено к фундаментальным работам Природы. И все-таки с той же уверенностью можно сказать, что наше чувство прекрасного откликается на то, что мы в них находим.
Что же объясняет эту восхитительную гармонию Разума и Материи? Без объяснения этого чуда наш Вопрос остается без ответа. Эта тема будет затронута в нашей медитации неоднократно. А сейчас два коротких предварительных рассуждения:
1. Мы, люди, в первую очередь визуальные существа. Конечно, наше зрение и наши самые глубинные виды мышления (множеством менее очевидных способов) обусловлены нашим взаимодействием со светом. Каждый из нас, например, рожден, чтобы в совершенстве, хотя и неосознанно, практиковать проективную геометрию. Эта способность жестко вмонтирована в наш мозг. Именно это позволяет нам интерпретировать двумерное изображение, которое получает наша сетчатка, как представление о мире объектов в трехмерном пространстве.
Наш мозг содержит специализированные модули, которые позволяют нам быстро и без сознательных усилий создавать динамическое представление о мире, в основе которого — трехмерные объекты, расположенные в трехмерном пространстве. Мы делаем это, начиная с двумерных изображений на нашей сетчатке глаз (которые, в свою очередь, образуются благодаря лучам света, испущенным или отраженным от поверхностей внешних предметов, которые распространяются до нас по прямой). Восстановить из полученных нами изображений предметы, которые были их причиной, — непростая задача в инверсной проективной геометрии. На самом деле утверждается, что это неразрешимая задача, потому что в проекциях совершенно недостаточно информации, чтобы сделать однозначную реконструкцию. Основная проблема в том, что, даже чтобы просто начать ее решать, нам нужно отделить объекты от их фона (или от того, что находится перед ними). Чтобы достичь этого, мы пользуемся всевозможными уловками, основанными на типичных свойствах объектов, которые нам встречаются, таких как их цвет или контрастность текстуры и отчетливые границы. Но даже после того, как эта стадия успешно пройдена, нам остается сложная геометрическая задача, для которой Природа любезно снабдила нас превосходным специализированным процессором в нашей зрительной коре[3].
Другая важная черта нашего зрения состоит в том, что свет приходит к нам очень издалека и дает нам возможность заниматься астрономией. Видимое регулярное движение звезд и чуть менее систематическое движение планет послужили ранними намеками на подчинение Вселенной определенным законам и предоставили нам изначальное вдохновение и поле для проверки математического описания Природы. Как любой хороший учебник, оно содержит задачи различной степени сложности.
В самых передовых, современных разделах физики мы узнаем, что свет сам является формой материи, а также то, что на самом деле и материя в целом, при глубоком ее понимании, необыкновенно похожа на свет. Итак, еще раз: наш интерес и опыт соприкосновения со светом, который глубоко заложен в самой нашей природе, оказываются удачными и способствующими познанию.
Существам, которые, как большинство млекопитающих, воспринимают мир прежде всего через обоняние, было бы гораздо сложнее добраться до той физики, которую мы знаем, даже если бы они обладали высоким интеллектом в других областях. Можно вообразить, например, собак, эволюционирующих в очень умных социальных существ, с развитым языком, живущих интересной полной жизнью, но лишенных отдельных видов любопытства и мироощущения, которые основаны на зрительном опыте и которые ведут к нашему виду глубокого понимания физического мира. Их мир был бы полон синтезов и разложений — у них были бы прекрасные наборы для химии, сложная кухня, афродизиаки и, как у Пруста, непроизвольная память. Проективная геометрия и астрономия, возможно, не были бы так представлены. Мы знаем, что запах — это химическое чувство, и мы начинаем понимать его основы в виде молекулярных событий. Но «обратная» задача понять по запаху, какие молекулы вызвали его и какие законы им свойственны, и в конце концов прийти к физике, какой мы ее знаем, кажется мне безнадежно сложной.
Птицы же — визуальные существа, как и мы. Кроме того, их образ жизни дал бы им дополнительное преимущество перед людьми в том, чтобы начать понимать физику. Птицы с их свободой полета испытывают присущую трехмерному пространству симметрию столь хорошо знакомым им способом, которого у нас нет. Они также испытывают основные законы движения (и особенно роль инерции в своей повседневной жизни), так как они существуют в практически лишенной трения среде. Птицы рождаются, можно сказать, с интуитивным знанием классической механики и принципа относительности Галилея, так же как и геометрии. Если бы какие-нибудь виды птиц развили хорошее абстрактное мышление, т.е. перестали бы иметь «птичьи мозги», они бы быстро создали физику. А вот людям пришлось отучиваться от нагруженной трением аристотелевой механики, чтобы достичь более глубокого понимания. Исторически для этого потребовались немалые усилия!
Дельфины в их водной среде и летучие мыши с их эхолокацией предоставляют нам другие вариации на эту тему, но я не буду развивать их здесь.
Основной философский аргумент, который эти соображения иллюстрируют, состоит в том, что мир не дает своей собственной уникальной интерпретации. Мир предлагает множество возможностей для разных вселенных, основанных на разных чувствах, которые способствуют совершенно разным интерпретациям значимости мира. В этом смысле наша так называемая Вселенная уже очень похожа на мультивселенную.
2. Успешное восприятие включает в себя сложные умозаключения, поскольку информация, которую мы получаем о мире, одновременно очень неполная и сильно «зашумлена» побочными сигналами. Несмотря на наши врожденные способности, мы также должны учиться видеть, взаимодействуя с миром, формируя ожидания и сравнивая наши предсказания с действительностью. Когда мы формируем ожидания, которые оказываются правильными, мы испытываем удовольствие и удовлетворение. Эти механизмы вознаграждения поощряют успешное обучение. Также они стимулируют наше чувство прекрасного — а на самом деле они и есть это чувство.
Суммируя все эти наблюдения, мы обнаруживаем объяснение того, почему мы находим интересные явления (явления, благодаря которым мы узнаем что-то новое!) в физике красивыми. Важное следствие состоит в том, что мы особенно ценим опыт, который нас удивляет, но удивляет не слишком сильно. Стандартное, поверхностное узнавание не потребует от нас усилий и не сможет быть вознаграждено так же, как активное обучение. В то же время явления, значение которых мы совсем не можем понять, также не принесут нам удовольствия; это помехи.
И здесь нам тоже повезло в том, что Природа использует в своей основе симметрию и экономию средств: ведь эти принципы, так же как наше интуитивное понимание света, способствуют успешным предсказаниям и обучению. По внешнему виду части симметричного объекта мы можем предсказать (успешно!) внешний вид остальной его части; по поведению частей объектов природы мы можем предсказать (иногда успешно!) поведение целых объектов. Следовательно, симметрия и экономия средств — это как раз то, что мы хорошо приспособлены воспринимать как красоту.
НОВЫЕ ИДЕИ И ИНТЕРПРЕТАЦИИ
Вместе с новым взглядом на некоторые очень старые и некоторые не столь старые идеи вы найдете в этой книге и несколько идей существенно новых. Здесь я бы хотел упомянуть некоторые из самых важных.
Мое представление Главной теории как геометрии и мои размышления о следующих шагах за ее пределы являются адаптацией моих работ в фундаментальной физике. Эти работы, конечно же, основаны на работах многих других людей. Новым, насколько мне известно, является применение цветовых полей в качестве примера дополнительных измерений и мое использование тех возможностей, которые они открывают для иллюстрации локальной симметрии.
Моя теория о том, что поощрение обучения лежит в основе нашего чувства прекрасного в важных случаях и является его эволюционной причиной, а также приложение этой теории к музыкальной гармонии, которое предлагает рациональное объяснение открытий Пифагора в музыке, составляют созвездие идей, которыми я долгое время развлекался частным образом и которые впервые представляю публике здесь. Будьте бдительны!
Мои рассуждения о расширении цветового восприятия основано на идущих в настоящее время практических исследованиях, которые, как я надеюсь, приведут к появлению коммерческих продуктов и которые защищены патентами.
Я хотел бы думать, что Нильс Бор поддержал бы мою широкую интерпретацию дополнительности, и мог бы даже признать свое авторство — но не уверен, что он бы это сделал.
Пифагор I: Мысль и объект
Эфемерный Пифагор
Человек по имени Пифагор жил примерно в 570–495 гг. до н.э., но о нем известно очень мало. Или, вернее, о нем «известно» очень много, но бóльшая часть этих фактов наверняка ошибочна, потому что документальные свидетельства его жизни полны противоречий. В них сочетаются возвышенное, смешное, невероятное и даже полная нелепица.
Говорили, что Пифагор был сыном Аполлона, имел золотое бедро и светился. Возможно, он был сторонником вегетарианства, хотя вполне может быть, что все было наоборот. Среди его самых известных высказываний дурную славу приобрел запрет есть бобы, потому что «у бобов есть душа», хотя несколько ранних источников недвусмысленно отрицают, что Пифагор когда-либо говорил или верил во что-то подобное. Более определенно можно сказать, что Пифагор верил в переселение душ и проповедовал это учение. Существует несколько историй, которые подтверждают это, хотя каждая из них, конечно, вызывает сомнения. Согласно Авлу Геллию[4], Пифагор помнил четыре свои прошлые жизни, в том числе ту, в которой он был прекрасной куртизанкой по имени Алко. Ксенофан вспоминал, что Пифагор, услышав скулеж собаки, которую били, бросился остановить ее обидчика, заявив, что узнал голос умершего друга. Также Пифагор, как и святой Франциск столетия спустя, поклонялся животным.
Стэнфордская энциклопедия философии — кстати, бесплатный и чрезвычайно полезный сетевой ресурс — подытоживает все это в следующем виде:
В современности сложился известный образ Пифагора как ведущего математика и ученого. Тем не менее дошедшие из древности свидетельства говорят о том, что, хотя Пифагор был известен в годы своей жизни и даже 150 лет спустя после смерти, во времена Платона и Аристотеля, его слава не была связана с математикой или наукой. Он был знаменит как:
1) знаток того, что происходит с душой после смерти, считавший, что душа бессмертна и переживает многочисленные реинкарнации;
2) знаток религиозных ритуалов;
3) чудодей, у которого было золотое бедро и который мог быть в двух местах одновременно;
4) основоположник аскетического образа жизни, включающего в себя ограничения в пище, религиозные ритуалы и суровую самодисциплину.
Некоторые факты выглядят более ясными. Реальный Пифагор родился на греческом острове Самосе, много путешествовал и стал вдохновителем и создателем необычного религиозного движения. Его братство посвященных процветало в течение недолгого времени в Кротоне, в Южной Италии, и имело несколько ответвлений в других провинциях, пока не было повсеместно запрещено. Пифагорейцы организовывали тайные общества, вокруг которых сосредотачивалась жизнь братьев. Эти общины, включающие и мужчин, и женщин, способствовали появлению некого вида интеллектуального мистицизма, который казался современникам удивительным и великолепным, хотя и пугающе необычным. Их взгляды на мир сосредоточились вокруг молитвенного восхищения числами и музыкальной гармонией, которые они считали отражением глубинной структуры реальности. Как мы увидим далее, в какой-то мере это имело отношение к действительности.
Настоящий Пифагор
Снова приведем цитату из Стэнфордской энциклопедии:
Портрет Пифагора, который вырисовывается из этих свидетельств, показывает нам не математика, который приводит строгие доказательства, и не ученого, который проводит эксперименты, чтобы открыть природу естественного мира, а скорее, какого-то человека, который придает особое значение и приписывает особую роль математическим соотношениям, которые были известны и до него.
Бертран Рассел более лаконичен:
Это смесь Эйнштейна и Мэри Бейкер Эдди[5].
Для ученых, изучающих настоящую биографию Пифагора, самой большой проблемой является тот факт, что последователи Пифагора приписывали ему свои собственные мысли и открытия. Очевидно, так они надеялись одновременно придать вес своим идеям и улучшить репутацию Пифагора, чтобы развивать свою общину — ту, которую он основал. Таким образом, блестящие открытия в математике, физике, музыке, а также вдохновляющий мистицизм, плодотворная философия и чистая мораль были все связаны с образом одной богоподобной фигуры. Эта приводящая в священный трепет фигура и стала для нас настоящим Пифагором.
Нельзя сказать, что совершенно неприемлемо приписывать заслуги эфемерного Пифагора (оставшегося в истории) настоящему Пифагору, поскольку великие достижения в математике и физике, совершенные настоящим Пифагором, проистекали из образа жизни, на который мнимый Пифагор вдохновил своих последователей, и из общины, которую тот создал.
(Если угодно, вы можете провести параллели с тем, как по-разному складывается судьба других крупных религиозных деятелей при жизни и после.)
Благодаря Рафаэлю мы знаем, как мог выглядеть настоящий Пифагор. На цветной вклейке, на иллюстрации B мы видим, как он, окруженный почитателями, сосредоточенно записывает что-то в большой книге.
«Число есть сущность всех вещей»
Очень трудно разобрать, что же там пишет Пифагор, но мне нравится думать, что это какой-то вариант его фундаментального кредо:
«Число есть сущность всех вещей»[6].
Очень трудно понять сквозь разделяющую нас огромную пропасть во времени и пространстве, что же именно он имел в виду под этой фразой. Так что здесь нам придется дать волю своему воображению.
Теорема Пифагора
Начнем с того, что на Пифагора неизгладимое впечатление произвела теорема, впоследствии названная его именем. Впечатление было настолько огромным, что из-за этого открытия он нарушил принципы вегетарианства и заказал гекатомбу — ритуальное жертвоприношение сотни быков, за которым следовал пир. Это было сделано в знак благодарности музам.
Из-за чего же был весь шум?
Теорема Пифагора — это утверждение, касающееся прямоугольных треугольников, т.е. треугольников, имеющих угол, равный 90°, иначе говоря, прямой угол. Теорема гласит, что если построить квадраты на разных сторонах такого треугольника, то сумма площадей двух меньших квадратов будет равна площади большего. Классический пример — это прямоугольный треугольник со сторонами 3-4-5, изображенный на илл. 1.
Илл. 1. Прямоугольный треугольник со сторонами 3-4-5, простейший случай теоремы Пифагора
Площади двух меньших квадратов составляют 32 = 9 и 42 = 16, как мы можем это увидеть, если в духе Пифагора подсчитаем количество маленьких квадратиков, на которые разбиты фигуры. Площадь большого квадрата составляет 52 = 25. И мы можем проверить: 9 + 16 = 25.
Сейчас теорема Пифагора знакома большинству из нас, хотя бы как смутное воспоминание из школьного курса геометрии. Но если вы услышите заново — ушами Пифагора, так сказать, — содержащееся в ней послание, вы поймете нечто потрясающее. Эта теорема гласит, что геометрия объектов воплощает скрытые численные отношения. Иными словами, она говорит, что Числами можно описать пусть не все, но по крайней мере нечто очень важное в физической реальности, а именно размеры и формы объектов, составляющих ее.
Позднее в этой медитации мы будем иметь дело с гораздо более продвинутыми и сложными концепциями, и мне придется прибегать к метафорам и аналогиям, чтобы передать их значение. Та особая радость, которую ученый находит, когда мыслит четкими математическими категориями, а точно определенные понятия идеально подходят друг к другу, теряется при такой передаче. Но сейчас у нас есть возможность испытать эту особую радость. Часть волшебства теоремы Пифагора состоит в том, что ее можно доказать, имея минимальную подготовку. Самые лучшие ее доказательства незабываемы, и воспоминание о них остается на всю жизнь. Они вдохновляли Олдоса Хаксли и Альберта Эйнштейна — не говоря уж о самом Пифагоре! — и, надеюсь, вдохновят и вас.
Доказательство Гвидо
«Так просто!»
Именно эти слова произнес Гвидо, юный герой рассказа Олдоса Хаксли «Молодой Архимед», описывая свое доказательство теоремы Пифагора. Доказательство Гвидо основывается на формах, изображенных на цветной вклейке (иллюстрация С).
Забава Гвидо
Давайте разберем то, что было очевидно для Гвидо с первого взгляда.
Каждый из двух больших квадратов, разделенных на части, содержит четыре цветных треугольника, и они одинаковы в обоих больших квадратах. Все цветные треугольники являются прямоугольными треугольниками, и все они имеют одинаковый размер. Будем считать, что длина самой короткой стороны есть a, следующей по длине — b, а самой длинной (гипотенузы) — с. Тогда легко заметить, что стороны двух больших квадратов имеют длину a + b, и далее, что эти два квадрата равны по площади. Таким образом, не вошедшие в треугольники части больших квадратов тоже должны иметь равные площади.
Но из чего состоят эти равные площади? В первом большом квадрате, слева, у нас есть синий квадрат со стороной a и красный квадрат со стороной b. Они имеют площади a2 и b2. Во втором большом квадрате, справа, у нас есть серый квадрат со стороной c. Его площадь равна c2. Вспомнив то, о чем говорилось в предыдущем абзаце, мы можем прийти к выводу, что a2 + b2 = c2.
А это и есть теорема Пифагора!
Доказательство Эйнштейна (?)
В своих автобиографических записках Эйнштейн вспоминает:
Помню, дядя рассказал мне о теореме Пифагора еще до того, как священная книжка по геометрии попала мне в руки. В результате многочисленных усилий мне удалось добиться успеха в «доказательстве» этой теоремы на основании подобия треугольников; таким образом мне казалось «очевидным», что соотношение сторон в прямоугольном треугольнике должно опр…