Происхождение жизни. От туманности до клетки
Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).
Серию PRIMUS
составят дебютные просветительские
книги ученых и научных журналистов.
Серия появилась благодаря совместной
инициативе "Книжных проектов Дмитрия Зимина"
и фонда "Эволюция" и издается при их поддержке.
Это межиздательский проект:
книги серии будут выходить в разных издательствах,
но в едином оформлении.
На данный момент в проекте участвуют
два издательства, наиболее активно
выпускающих научно-популярную литературу:
CORPUS и АЛЬПИНА НОН-ФИКШН.
Предисловие
Почему жизнь на планете Земля устроена так, а не иначе? Почему цепи ДНК состоят из четырех видов звеньев, а белковые — из двадцати? Почему в клетках используются именно белки и ДНК, а не какие-нибудь другие вещества? Подобные вопросы часто возникают у школьников и студентов, изучающих биологию. Но в учебниках ответов на них нет. В результате студенты привыкали, что задавать эти вопросы бесполезно. И даже когда они вырастали в ученых и могли попытаться на них ответить сами, привычка мешала им это сделать.
Тем временем в биологии с начала XXI века происходит настоящая научная революция. Развитие технологий определения последовательностей ДНК (секвенирования) привело к тому, что базы данных прочитанных последовательностей растут, как снежный ком. Для анализа этого огромного количества данных биологи стали привлекать на помощь специалистов в математике и компьютерных науках. Эти специалисты, чтобы представлять, с чем они работают, стали изучать основы биологии. И, естественно, из них посыпались те самые проклятые «почему?», ставящие биологов в тупик. Автор столкнулся с такими вопросами программистов в Школе анализа данных, организованной компанией «Яндекс» совместно с факультетом биоинженерии и биоинформатики МГУ.
Тем временем наметился путь к ответам на эти вопросы. Успехи химиков привели к возникновению синтетической биологии — созданию новых организмов с новыми, невиданными свойствами. Достижения синтетической биологии, например расширение генетического алфавита до шести букв, позволяют сравнить решения, выбранные нашей земной жизнью, с альтернативными вариантами и выяснить, по каким причинам эволюция предпочла один из них. Тот или иной выбор был сделан жизнью очень давно, скорее всего, до появления клеток. Изучая каждую альтернативу, мы лучше понимаем, как возникла жизнь на нашей планете.
В XXI веке бурно развивалась не только биология. Например, астрономы за последние годы открыли тысячи планет у других звезд (они называются экзопланеты). С этими данными мы теперь можем оценить, насколько наша Солнечная система уникальна или типична для Галактики. Космические зонды, отправленные к дальним планетам, кометам и астероидам, собрали много новой информации о древнейшей истории Солнечной системы. Геологи, вооруженные тончайшими методами анализа горных пород и метеоритов, узнали много нового об условиях, существовавших на древней Земле в те времена, когда жизнь на ней только зарождалась.
Эта книга стала попыткой объединить в один связный рассказ лавину научных статей, проясняющих разные моменты происхождения жизни и вышедших за последние 15 лет. Она написана на основе курсов лекций, которые автор читал с 2010 года в Летней экологической школе и с 2014 года в МГУ. Автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. К сожалению, на переднем крае науки не всегда есть простые пути, и некоторые главы, например 11-я и 13-я, могут оказаться сложными для неподготовленного читателя. Трудные места из глав 15 и 16, посвященных появлению биологических мембран и связанных с мембранами энергетических систем, в итоге удалось вынести в отдельную, 17-ю главу. Так что не пугайтесь, если она покажется вам слишком сложной, — ее материал развивает и углубляет идеи 15-й и 16-й глав, но и без нее восприятие книги не пострадает.
Естественно, в такой бурно развивающейся области науки мало единых устоявшихся мнений, разделяемых большинством ученых. Автор постарался показать «научную кухню»: какие альтернативные гипотезы выдвигаются и какими экспериментами их проверяют.
В ряде глав есть врезки, выделенные другим шрифтом. В них повторяются кусочки школьных курсов, необходимые для понимания главы. Старшеклассники и первокурсники могут их пропускать, а вот взрослым читателям они пригодятся. Чтобы материал книги не повисал в пустоте, а как-то соотносился с повседневной жизнью, автор постарался связать описываемые вещества и биохимические процессы с хорошо знакомыми вещами из кулинарии, медицины и косметики.
Благодарности
Эта книга появилась на свет благодаря многим людям, и я хочу поблагодарить их за то, что они сделали. Начать ее историю стоит, пожалуй, с вышедшей в 1999 году книги палеонтолога Кирилла Еськова «История Земли и жизни на ней». Она во многом стала для автора образцом стиля, связности и логичности изложения и повлияла на мой интерес к проблеме возникновения жизни. Если бы не труд Кирилла Юрьевича, эта книга не стала бы такой, какая она есть.
Далее следует благодарить профессора Армена Мулкиджаняна. С его рассказа о теории «цинкового мира» на семинаре нашего института в 2008 году начался мой пристальный интерес к свежим работам в области происхождения жизни. Шестая и пятнадцатая главы этой книги построены в основном на работах Армена Яковлевича. Вполне возможно, что его идеям в книге уделено больше внимания, чем другим альтернативам, но эта необъективность остается на совести автора.
В основу книги лег курс лекций, который автор читал школьникам 10-го класса в Летней экологической школе (ЛЭШ). Я благодарен всем, кто делает ЛЭШ и дает возможность преподавать там уникальные курсы уникальным школьникам. Марина Фридман, услышав мои лекции в ЛЭШ, предложила записать их и издать циклом статей в журнале «Химия и жизнь — XXI век». Текст стал гораздо лучше и был опубликован благодаря редактору журнала Елене Клещенко.
Этот цикл статей, вышедший в «Химии и жизни» в 2013 году, был отмечен литературной премией имени Александра Беляева. На вручении премии автора приперли к стене представители издательств и потребовали писать книгу.
Книга превратилась из научной в хотя бы слегка популярную благодаря редакторам Елене Наймарк и Виктору Сурдину, а также бета-читателям: Александру Хохлову, Марине Мамаевой, Наталье Агаповой и Ларисе Бучок. Естественно, благодарность заслужили работавшие над книгой сотрудники издательства «Альпина нон-фикшн». И последней, но не по значимости, я благодарю замечательную Елену Кармальскую, которая поддерживала меня во всем и наполняла жизнь радостью. Лена, я предлагаю тебе руку, сердце и соавторство в следующей книге!
ПЛАНЕТЫ, ПРИГОДНЫЕ ДЛЯ ЖИЗНИ
Когда наш мир на треть был меньше,
На треть синей и горячей,
Погасших звезд алмазный пепел
Расцвел в тепле чужих лучей...
Виктор Аргонов Project
Земля — единственная известная нам планета, на которой есть жизнь. Чтобы понять, как она появилась, нам надо представлять себе условия, которые существовали на нашей планете в древнейшие времена, — температуру, состав и давление атмосферы, площадь материков и океанов, состав морской воды и минералов земной коры. К сожалению, все следы первых 600 млн лет истории Земли были стерты последующими геологическими событиями, поэтому ключи к древнейшей истории Земли надо искать на других небесных телах, история которых была более спокойной: Луне, Марсе, спутниках планет-гигантов, кометах и астероидах. Есть шанс, что мы найдем жизнь на Марсе или спутниках Юпитера и Сатурна. Если окажется, что она возникла независимо от земной, то мы получим уникальную возможность сравнить ее с привычной земной и узнать, какие свойства жизни являются обязательными, а какие могут различаться у независимо возникших линий жизни. Если же мы найдем за пределами Земли жизнь общего происхождения с нами, это будет решающим доказательством ее межпланетного переноса и, скорее всего, примером того, насколько далеко могут разойтись живые организмы единого происхождения за миллиарды лет изоляции в разных условиях. Так или иначе, мы не можем глубоко понять происхождение и эволюцию жизни на нашей планете в отрыве от истории минеральных слоев Земли (коры, мантии, ядра) и без учета более широкого контекста — истории Солнечной системы. А если мы хотим оценить, насколько вероятно возникновение жизни во Вселенной, нам надо сравнивать Солнечную систему с известными экзопланетными системами. Поэтому мы начнем с краткого рассказа об устройстве Солнечной системы, ее происхождении и истории, затем опишем устройство планет земной группы (Земля, Марс, Венера) и только после этого подойдем к вопросу о собственно появлении жизни.
Строение Солнечной системы
Наша Солнечная система состоит из множества небесных тел. Крупнейшие из них после Солнца — четыре планеты-гиганта: Юпитер, Сатурн, Уран и Нептун и четыре планеты земного типа: Земля, Венера, Марс и Меркурий. Кроме них имеются астероиды — мелкие объекты, обращающиеся вокруг Солнца в основном между орбитами Марса и Юпитера, хотя есть группы астероидов как ближе, так и дальше от Солнца. За орбитой Нептуна расположен пояс Койпера — скопление небольших ледяных объектов. Первый объект пояса Койпера, Плутон, был открыт намного раньше остальных и поэтому долго считался девятой планетой.
Все эти объекты обращаются вокруг Солнца по орбитам, близким к круговым. Кроме них в Солнечной системе есть множество комет. Они движутся по вытянутым эллиптическим орбитам и, нагреваясь вблизи Солнца, начинают испаряться. Испарение приводит к появлению у кометы видимого «хвоста». Размеры орбит комет сильно различаются. У самых короткопериодических комет орбита целиком находится внутри орбиты Юпитера, а непериодические выходят далеко за границы пояса Койпера, образуя так называемое облако Оорта.
Помимо планет, астероидов, койперовских объектов и комет есть спутники, обращающиеся вокруг всех планет, кроме Меркурия и Венеры. Земля имеет один крупный спутник — Луну, Марс — два маленьких, Фобос и Деймос, а у планет-гигантов есть десятки спутников. Среди спутников планет-гигантов выделяются регулярные и нерегулярные. Плоскость орбиты регулярных спутников близка к плоскости экватора планеты, а форма орбиты — к круговой. У нерегулярных спутников орбиты, как правило, сильно вытянуты и могут находиться под любым углом к экватору планеты, и они обычно обращаются дальше от планеты, чем регулярные. Крупнейшие спутники планет-гигантов, Ганимед и Титан, по размеру в полтора раза больше нашей Луны и практически равны Меркурию.
Орбитальная механика
Само слово «планета» происходит от древнегреческого πλανήτης — «блуждающая». Если каждую ночь наблюдать положение планет на небе и записывать наблюдения, то окажется, что планеты движутся относительно звезд по причудливому пути. Подобно Луне и Солнцу, они всегда находятся в полосе зодиакальных созвездий, но если Луна и Солнце движутся практически равномерно в одну сторону, то планеты останавливаются и меняют направление движения, описывая сложные петли. В геоцентрической системе мира, господствовавшей в древней и средневековой астрономии, для описания этого движения вводились дополнительные окружности: по окружности вокруг Земли (деференту) равномерно обращается невидимая точка (средняя планета), вокруг которой по второй окружности (эпициклу) равномерно обращается истинная планета.
С переходом к гелиоцентрической системе мира стало понятно, что видимое движение планет складывается из двух: обращения Земли вокруг Солнца и обращения наблюдаемой планеты вокруг него же. Поначалу думали, что планеты обращаются вокруг Солнца тоже по круговым деферентам и эпициклам, но более точные измерения Тихо Браге в XVI веке показали, что эта модель не согласуется с наблюдениями. Иоганн Кеплер, анализируя записи Браге в начале XVII века, сформулировал три эмпирических закона движения планет вокруг Солнца (рис. 1.1).
Первый закон Кеплера: орбита планеты имеет форму эллипса, а Солнце находится в одном из его фокусов.
Второй закон Кеплера: угловая скорость движения планеты в разных местах ее орбиты обратно пропорциональна расстоянию до Солнца.
Третий закон Кеплера: квадраты периодов обращения двух планет соотносятся как кубы больших полуосей их орбит.
Что такое эллипс и где у него фокус? Как известно, окружность можно нарисовать циркулем, потому что все ее точки находятся на равном расстоянии от центра. Для эллипса способ рисования будет сложнее. Для всех точек эллипса сумма расстояний до двух фокусов одинакова. Если мы воткнем две канцелярские кнопки и привяжем к ним нитку так, чтобы ее длина была заметно больше расстояния между кнопками, оттянем нитку в сторону карандашом и будем водить им вдоль нитки так, чтобы она все время была натянута, мы нарисуем эллипс, а кнопки будут в его фокусах. Окружность характеризуется одной величиной — радиусом. У эллипса есть большая полуось (аналог радиуса) и эксцентриситет — отношение к большой полуоси. Если эксцентриситет близок к нулю, то фокусы эллипса находятся совсем рядом, и эллипс близок к окружности. Если эксцентриситет большой, то эллипс имеет сильно вытянутую форму. Орбиты планет имеют небольшой эксцентриситет (0,2 — для Меркурия и менее 0,1 — для остальных планет), а орбиты комет отличаются большим эксцентриситетом, близким к единице.
В дальнейшем Исаак Ньютон сформулировал закон всемирного тяготения, из которого выводятся все три закона Кеплера, если пренебречь влиянием планет друг на друга и на Солнце.
Механика орбитального движения во многом непривычна для неспециалистов. На орбите, чтобы увеличить скорость движения, надо тормозить, а чтобы ее уменьшить, — разгоняться! Проиллюстрируем это на примере выведения спутников на геостационарную орбиту. Эта околоземная орбита, лежащая в плоскости экватора, с периодом обращения 23 часа 56 минут, очень удобна для спутников связи, потому что спутник на ней все время находится над одной точкой Земли и наземную антенну на него можно навести один раз и больше не двигать. Геостационарная орбита имеет высоту 35 786 км над поверхностью Земли, и спутник на ней движется со скоростью 3,07 км/с. При выведении ракета-носитель сначала доставляет спутник на низкую околоземную орбиту, проходящую примерно в 200 км над поверхностью Земли. Скорость на ней равна первой космической скорости, около 8 км/с. Затем спутник включает двигатель и разгоняется еще на 2 км/с, после чего оказывается на так называемой геопереходной орбите. Это эллиптическая орбита с большим эксцентриситетом, которая в нижней точке касается низкой околоземной, а в верхней — геостационарной орбиты. По второму закону Кеплера скорость спутника в верхней точке оказывается намного ниже, чем в нижней, — около 1,7 км/с. Совершив полоборота по геопереходной орбите, в верхней точке спутник включает двигатель во второй раз и разгоняется еще примерно на 1,3 км/с. При этом он оказывается на геостационарной орбите. Несмотря на два разгона, его скорость упала с 8 до 3,07 км/с. Кинетическая энергия летящего спутника при этом не исчезла бесследно, а перешла в потенциальную — он поднялся намного выше над Землей.
Гравитационная дифференциация
Когда в XVIII веке впервые удалось измерить массу Земли, оказалось, что ее средняя плотность составляет 5,5 г/см3. Однако плотность горных пород на поверхности Земли почти вдвое меньше — около 3 г/см3. Следовательно, внутри Земли должно быть более плотное вещество. По данным геологии, в центре Земли и других планет земного типа находится ядро из железа с примесями никеля и других металлов, со средней плотностью 10 г/см3. Ядро окружает полужидкая силикатная мантия, покрытая сверху твердой силикатной корой с плотностью около 3 г/см3.
При образовании планет составляющие их силикаты и металлы были перемешаны. В дальнейшем планеты расслаивались: железо тянуло к центру Земли и формировало ядро, а силикаты всплывали наверх, образуя мантию и кору.
В процессе расслоения в глубинах планеты выделяется тепло, поддерживающее ядро и мантию в расплавленном состоянии. Другим источником энергии внутри планеты является радиоактивный распад нестабильных элементов. Гравитационная дифференциация поддерживает конвективные течения в мантии, а в случае Земли — еще и движение плит земной коры относительно друг друга.
При ином химическом составе небесного тела оно разделяется на другие слои. Например, крупные спутники планет-гигантов имеют силикатное ядро, мантию из жидкой воды и ледяную кору. На Европе и Энцеладе есть даже аналоги вулканизма и движения литосферных плит — многокилометровые фонтаны воды и движение ледяных блоков коры. Сами планеты-гиганты разделяются на протяженную атмосферу из водорода и гелия, более тяжелый слой жидких метана, аммиака и воды и силикатно-железное ядро. Большую часть их диаметра составляет массивная плотная атмосфера.
Приливные явления
Законы Кеплера подразумевают, что орбиты планет и спутников неизменны и вечны. Однако эти законы выполняются в точности, только если размеры тел ничтожно малы по сравнению с расстояниями между ними, а влиянием планет друг на друга можно пренебречь. Поскольку реальные планеты и спутники имеют заметные размеры, сила притяжения действует на их ближние к друг другу части сильнее, чем на дальние. За счет этой разницы небесные тела немного деформируются, их форма становится слегка вытянутой, подобно дыне. В случае Земли ее океаны легче поддаются деформации, чем земная кора, и изменения их уровня под действием тяготения Луны вызывают приливы, благодаря чему эти силы получили свое название.
Приливные силы быстрее уменьшаются с расстоянием, чем сила тяжести. При увеличении расстояния в два раза притяжение между телами ослабляется в четыре раза, а приливные влияния — в восемь раз. Поэтому на Земле приливные силы, вызванные Луной, преобладают над приливными силами Солнца, хотя Солнце гораздо массивнее Луны.
Движение масс воды, натыкающихся на континенты, и трение в деформируемой земной коре приводят к выделению тепла. Источником этой тепловой энергии является вращение планеты, и оно постепенно замедляется под действием приливов. Кроме того, похоже, что приливное действие Луны направляет дрейф материковых плит земной коры — их движение заметно несимметрично в направлении запад–восток (Riguzzi et al., 2010).
Благодаря приливным силам возможно взаимодействие между вращением планеты и орбитальным движением ее спутников. В системе Земля — Луна вращение Земли вокруг своей оси гораздо быстрее, чем орбитальное движение Луны, поэтому приливный «горб» на Земле немного обгоняет Луну. Притяжение Луны к этому горбу приводит к тому, что вращение Земли постепенно замедляется, а кинетическая энергия передается Луне. При этом радиус лунной орбиты растет, также растет и период обращения Луны вокруг Земли.
Более крупный из спутников Марса, Фобос, совершает оборот вокруг планеты всего за 6 часов, тогда как период вращения Марса вокруг своей оси — 24,5 часа, чуть больше, чем у Земли. Поэтому в системе Марс — Фобос происходит передача кинетической энергии в обратную сторону — от спутника к планете. Фобос неуклонно приближается к Марсу и в ближайшие 15–20 млн лет достигнет так называемого предела Роша, где приливные силы сравняются с тяготением Фобоса, скрепляющим его в единое тело. Достигнув этого предела, Фобос разрушится, и вокруг Марса появится кольцо из камней и пыли, подобное кольцам Сатурна.
При движении спутника по эллиптической орбите его скорость максимальна в ближайшей к планете части орбиты и там же максимально приливное взаимодействие. Поэтому приливы могут изменять форму орбиты спутника. Так, орбита Луны становится более вытянутой под действием приливов, а у орбит спутников Юпитера, наоборот, вытянутость уменьшается.
Орбитальные резонансы
Есть и другая причина, по которой движение планет немного отклоняется от описанного в законах Кеплера. Это гравитационное взаимодействие между планетами. Хотя оно гораздо слабее, чем их притяжение Солнцем, за миллионы лет его влияние может накапливаться и сильно изменять орбиты. Притяжение двух планет друг к другу максимально в период противостояния — когда расстояние между ними минимально. Поэтому влияние разных планет на движение друг друга вокруг Солнца зависит от отношения их периодов обращения. Если эти периоды не образуют простого соотношения типа 1:2, 2:3 или 2:5, то противостояния происходят в разных участках орбит без строгой закономерности, а изменения орбит на больших промежутках времени стремятся к нулю. Если периоды обращения планет относятся как небольшие целые числа, то говорят, что их орбиты находятся в резонансе. В этом случае противостояния происходят в одних и тех же местах орбиты, небольшие изменения орбит постепенно накапливаются, и со временем орбиты могут сильно изменяться1.
Последствия орбитального резонанса зависят от нескольких факторов: соотношения масс тел, отношения их периодов обращения и эксцентриситетов орбит. Такие резонансы, как 1:2, 1:3, 5:2, 3:7, как правило, приводят к быстрому изменению орбит. Если массы тел сильно отличаются (например, Юпитер и астероид), то орбита астероида становится сильно вытянутой, и он выбрасывается из Солнечной системы. Резонансы 2:3, 3:4, 4:5, напротив, могут стабилизировать орбиты. Так, астероиды группы Хильды находятся в устойчивом резонансе 2:3 с Юпитером, а Плутон — с Нептуном.
Особенно быстрые изменения происходят при резонансе 1:2 — тогда планеты встречаются в одной и той же части орбиты, и их притяжение вытягивает их орбиты в эллипсы. В таком орбитальном резонансе находятся спутники Юпитера, Ио, Европа и Ганимед, их периоды обращения относятся как 1:2:4. Однако приливные силы противостоят вытягиванию их орбит, поэтому конечным результатом борьбы орбитального резонанса с приливом оказывается рассеяние кинетической энергии орбитального обращения спутников в нагрев их недр и постепенное приближение к Юпитеру. Благодаря такому источнику энергии на Ио происходит самый активный вулканизм в Солнечной системе, фонтаны расплавленной серы бьют на сотню километров от ее поверхности.
Другое следствие орбитальных резонансов — так называемые пробелы Кирквуда в поясе астероидов. Разные астероиды имеют самые разные периоды обращения, но таких астероидов, которые бы находились близко к резонансам 2:1, 3:1, 5:2 и 7:3 с Юпитером, нет. Малые тела, которые могли быть на этих орбитах, неизбежно перешли на эллиптические орбиты, близко подходящие к Юпитеру, и были выброшены им из пояса астероидов.
Планеты Солнечной системы в настоящее время не образуют орбитальных резонансов между собой. Астрономы древности приложили много усилий, чтобы найти простую и красивую математическую закономерность в периодах обращения планет вокруг Солнца или в радиусах их орбит, но безуспешно. Теперь мы знаем, что Солнечная система с простыми соотношениями между периодами обращения планет оказывается неустойчива. На языке античной астрономии можно сказать, что музыка сфер способна звучать вечно, только если в ней нет гармоничных созвучий, иначе она начнет быстро меняться. В древней истории Солнечной системы, по-видимому, были периоды орбитальных резонансов между планетами, и они оставили свои следы в ее современном устройстве.
Планеты земной группы
Четыре внутренние планеты Солнечной системы — Меркурий, Венера, Земля и Марс — объединяются в земную группу. Они состоят из металлического ядра и силикатных мантии и коры, в отличие от планет-гигантов. Луна, хотя и не является планетой, по химическому составу также близка к планетам земной группы (рис. 1.2).
Однако по другим параметрам эти планеты сильно различаются между собой (табл. 1.1). Так, Земля имеет азотно-кислородную атмосферу умеренной плотности и большое количество жидкой воды на поверхности. Венера покрыта сверхплотной атмосферой из углекислого газа, которая создает сильнейший парниковый эффект и повышает температуру на поверхности планеты до 460 oC. Воды на Венере нет ни в жидком виде, ни в виде паров в атмосфере. Атмосфера Марса также состоит в основном из углекислого газа, но ее плотность в 5000 раз меньше плотности атмосферы Венеры. Марс отличается холодным климатом, и небольшое количество воды, сохранившееся на нем, находится в твердом виде в полярных шапках и в толще грунта в средних широтах. Меркурий не имеет атмосферы вовсе, температура его поверхности колеблется от –170 на ночной до 400 oC на дневной стороне. Земля обладает достаточно сильным магнитным полем, магнитные поля Марса и Меркурия примерно в 100 раз слабее и не защищают эти планеты от солнечного ветра (потока заряженных частиц из солнечной короны), на Венере магнитное поле не обнаружено. Земля и Марс совершают один оборот вокруг своей оси примерно за 24 часа, тогда как Меркурий и Венера — за 59 и 243 суток соответственно. Все планеты вращаются вокруг своей оси против часовой стрелки, если смотреть с Северного полюса, и только Венера — по часовой стрелке.
Планеты-гиганты
Юпитер является крупнейшей из планет Солнечной системы. Его масса превышает массу всех других планет, спутников, астероидов и комет вместе взятых. Средняя плотность Юпитера составляет 1,3 г/см3, что означает преобладание легких элементов — водорода и гелия — в составе планеты. Видимая поверхность Юпитера, судя по неравномерным движениям отдельных частей, является плотным слоем облаков, а не поверхностью жидкости или твердого тела. Мощное магнитное поле Юпитера собирает заряженные частицы солнечного ветра с большого объема, их падение на полюса планеты вызывает мощные полярные сияния.
Система спутников Юпитера была подробно изучена при помощи наземных телескопов, орбитального телескопа «Хаббл», пролетных зондов «Пионер-10, — 11», «Вояджер-1, — 2», «Улисс», «Кассини», «Новые горизонты» и особенно подробно — искусственным спутником Юпитера «Галилео».
Четыре крупнейших спутника Юпитера — Ио, Европа, Ганимед и Каллисто — были открыты Галилеем в 1610 году при помощи первого в мире телескопа (рис. 1.3).
Их диаметры — от 3100 км (Европа) до 5200 км (Ганимед), что сравнимо с размерами нашей Луны и даже планеты Меркурий. Периоды их обращения вокруг Юпитера составляют от 1,77 суток (Ио) до 16,7 суток (Каллисто). Измерения плотности показывают, что Ио состоит из скальных пород, Европа имеет водную мантию и ледяную кору общей толщиной около 100 км, а Ганимед и Каллисто состоят изо льда на 70–80%. Кроме четырех крупных спутников вокруг Юпитера обращаются еще четыре малых спутника: Метида, Адрастея, Амальтея и Теба. Все они обращаются внутри орбиты Ио, их размеры не превышают 250 км, а периоды обращения составляют от 7 до 16 часов. Еще Юпитер имеет 59 нерегулярных спутников размером в единицы или десятки километров, с периодами обращения от 130 до 1077 суток.
Вторая по величине планета Солнечной системы — Сатурн. Подобно Юпитеру, он состоит преимущественно из водорода и гелия, причем доля водорода больше, чем в составе Юпитера. Плотность Сатурна минимальна среди всех планет Солнечной системы, всего около 0,69 г/см3, поэтому его масса почти втрое меньше массы Юпитера при сопоставимых размерах.
Система спутников Сатурна столь же многочисленна, как и система Юпитера (рис. 1.4). Крупнейший спутник Сатурна, Титан, своим диаметром (5150 км) лишь немного уступает Ганимеду. Еще четыре спутника — Тефия, Диона, Рея и Япет — имеют размеры 1000–1500 км, два ближайших к планете, Мимас и Энцелад, — 400 и 500 км, остальные спутники не превышают в длину 260 км. Всего вокруг Сатурна обращается 24 регулярных спутника и 38 нерегулярных.
Титан уникален среди всех спутников тем, что он имеет плотную атмосферу. Кроме того, Титан — единственное кроме Земли тело Солнечной системы с озерами и реками на поверхности (рис. 1.5). Правда, при температуре –170 oC эти озера и реки состоят из жидких углеводородов (метана и этана) и текут по скалам из водяного льда. Атмосфера Титана состоит из азота с примесью метана. Под действием ультрафиолета в верхних слоях атмосферы образуются сложные углеводороды, которые создают желтую дымку, скрывающую поверхность спутника.
Остальные крупные спутники Сатурна состоят из водно-аммиачного льда с примесями силикатных минералов. Поверхность Япета, Дионы и Реи делится на переднее (по ходу орбитального движения) и заднее полушария, которые различаются цветом и рельефом; передние полушария Дионы и Реи заметно светлее задних, а у Япета, напротив, переднее полушарие черное как копоть, а заднее яркое, как свежий снег.
Энцелад находится в орбитальном резонансе 2:1 с более массивной Дионой. Сочетание орбитального резонанса и приливных воздействий Сатурна приводит к разогреву недр спутника и рождению гейзеров: из разломов льда в районе южного полюса Энцелада бьют фонтаны воды, которые преодолевают его тяготение. Замерзшие кристаллики льда оказываются на орбите вокруг Сатурна и образуют его самое внешнее рассеянное кольцо (кольцо Е). По данным зонда «Кассини», выбрасываемая вода содержит углекислый газ, аммиак, синильную кислоту и сложные углеводороды.
Кольца Сатурна — самая заметная часть его системы (рис. 1.6.). Сейчас кольца известны у всех четырех планет-гигантов, но только у Сатурна они плотны и отражают почти столько же света, сколько сама планета. Кольца состоят из ледяных частиц размером от миллиметров до десятков метров.
Толщина колец не превышает 1 км. Считается, что кольца возникли при распаде одного или нескольких спутников, затормозившихся за счет приливного взаимодействия с Сатурном и пересекших предел Роша. Структура колец поддерживается за счет взаимодействия со спутниками. Так, щель Кассини, разделяющая кольца А и В, поддерживается орбитальным резонансом 2:1 с Мимасом, выбрасывающим частицы из этой щели. Несколько мелких спутников обращаются вблизи внешнего края колец и даже среди колец: это Атлас, Прометей, Пандора, Пан, Янус и Эпиметей. Они называются «спутниками-пастухами», так как их воздействие удерживает частицы колец от перехода на другие орбиты. Например, Атлас поддерживает четкий внешний край кольца А. Янус и Эпиметей движутся по очень близким орбитам, радиус которых различается всего на 50 км, и периодически меняются местами.
Две внешние планеты Солнечной системы, Уран и Нептун, относятся к ледяным гигантам. Их диаметр — около 50 000 км (в четыре раза больше Земли и почти в три раза меньше Юпитера), а средняя плотность составляет около 1,3 (Уран) и 1,6 (Нептун) г/см3. Они состоят в основном из воды, метана и аммиака в жидком и твердом состояниях, а на долю водорода и гелия приходится менее 10%. Атмосферы Нептуна и особенно Урана значительно спокойнее, чем атмосфера газовых гигантов; устойчивые вихри заметны редко. Ось вращения Урана наклонена на 97 градусов относительно плоскости орбиты, поэтому смена времен года на нем происходит совсем не так, как на других планетах, а полюса получают в среднем за год больше тепла, чем экваториальные районы. Уран и Нептун обладают мощным магнитным полем, однако в отличие от других планет их магнитные полюса далеки от географических. Магнитная ось Урана наклонена на 59 градусов относительно оси вращения, Нептуна — на 47 градусов. Если магнитное поле газовых гигантов и планет земной группы порождается конвективными потоками в ядре, то для ледяных гигантов предполагаемый источник магнитного поля — жидкая водно-аммиачная прослойка ближе к поверхности.
Известно 27 спутников Урана и 14 спутников Нептуна. Пять спутников Урана — Миранда, Ариэль, Умбриэль, Титания и Оберон — достаточно велики, чтобы иметь форму шара (рис. 1.7.). Диаметр Миранды — 470 км, четыре остальных достигают размеров 1000–1500 км, состоят изо льда и небольшого каменного ядра. Все они, особенно Миранда и Ариэль, имеют следы тектонической активности и обновления поверхности. 13 внутренних спутников Урана — мелкие, до 130 км, вращающиеся среди колец Урана и испытывающие заметное приливное торможение. Со временем их ждут распад и превращение в новые кольца либо столкновение с планетой.
В системе Нептуна есть один крупный спутник — Тритон (рис. 1.8.) диаметром 2700 км (несколько меньше Луны), семь мелких внутренних спутников, очень близких к планете, и пять удаленных от планеты мелких нерегулярных спутников. Тритон обращается вокруг Нептуна в обратном направлении, как нерегулярный спутник, хотя его орбита практически круговая и наклонена лишь на 24 градуса относительно экватора планеты. Его плотность 2,07 г/м3 свидетельствует о большой доле каменных пород по сравнению с другими спутниками Урана и Нептуна. Состав Тритона и характер его орбиты заставляют предположить, что раньше Тритон был самостоятельной карликовой планетой, вроде Плутона, и был захвачен Нептуном при сближении. На поверхности Тритона заметны следы тектонической активности и гейзеры, извергающие азот. Активность этих гейзеров поддерживает разреженную азотную атмосферу, ее давление примерно в 50 000 раз ниже давления атмосферы Земли.
За Нептуном находится так называемый пояс Койпера (рис. 1.9). Он состоит из небольших ледяных объектов. Первый открытый объект пояса Койпера, Плутон, долгое время считался девятой планетой Солнечной системы. Когда был уточнен его диаметр (2400 км, в полтора раза меньше Луны), и особенно после открытия других похожих объектов, Плутон стал первым в новой категории карликовых планет. К ним относят объекты достаточно крупные, чтобы принять шарообразную форму, но недостаточно тяжелые, чтобы очистить окрестности своей орбиты от других тел. В эту категорию кроме Плутона попали крупнейший астероид Церера и три крупных тела пояса Койпера: Эрида, Макемаке и Хаумеа.
Тела пояса Койпера состоят в основном из водяного, метанового и аммиачного льда.
Многие из них имеют коричневую или красную поверхность. Этот цвет им придает толин — сложная смолоподобная смесь органических веществ, которая образуется под действием радиации на метановый и аммиачный лед. Плутон и Эрида с диаметром около 2400 км остаются самыми крупными телами пояса Койпера. Всего же их сейчас известно более тысячи. У многих тел пояса Койпера есть спутники, иногда довольно крупные. Харон, крупнейший спутник Плутона, по массе лишь в 9 раз уступает Плутону.
Орбиты тел пояса Койпера разнообразны. Большинство из них («холодное население пояса Койпера») имеют орбиты, близкие к круговым и почти в той же плоскости, что орбиты планет. Они делают оборот вокруг Солнца за 270–310 лет. К ним относится, например, Квавар. Другие, такие как Макемаке и Хаумеа («горячее население»), при тех же периодах обращения отличаются большим наклонением орбиты, до 30 градусов.
Плутон находится ближе к Солнцу, пересекает орбиту Нептуна, но опасных сближений не происходит, потому что его орбита наклонена на 15 градусов к плоскости орбиты Нептуна. Известно более 100 объектов с похожими орбитами (например, Орк) — они называются «плутино» и движутся в орбитальном резонансе 2:3 с Нептуном (период обращения — 240 лет). Наконец, есть так называемые обособленные объекты, которые находятся дальше всего от Солнца. К ним относятся, например, Эрида (период обращения — 561 год) и Седна (период обращения — около 11 400 лет).
Происхождение Солнечной системы. Экзопланеты2
Протопланетные диски
Формирование звезд, наблюдаемое и в настоящее время, происходит в газово-пылевых облаках. Такие облака под собственной тяжестью сжимаются и распадаются на фрагменты. По мере сжатия отдельных фрагментов небольшое случайное вращение, которое имело облако до сжатия, усиливается — по закону сохранения момента импульса если вращающиеся тела приближаются к центру вращения, то скорость вращения должна возрасти (так фигуристы на льду прижимают руки к телу, чтобы ускорить свое вращение). В случае газового облака взаимодействие вращения и силы тяжести приводит к тому, что облако принимает форму диска. Вдоль оси вращения сжатие происходит беспрепятственно, а в плоскости диска газ и пыль могут падать к центру, только потеряв по какой-либо причине скорость вращения. Центральное сгущение сжимающегося фрагмента облака — протозвезда — образуется еще до того, как фрагмент сожмется в диск. Гравитационная энергия падающего в протозвезду газа разогревает ее, и еще до начала термоядерных реакций светимость протозвезды может в сотни раз превышать ее будущую светимость в качестве обычной звезды. Примерно через миллион лет газ из диска в основном попадает в звезду, и светимость ее поддерживается уже только термоядерными реакциями. Известным примером звезды на этой стадии эволюции является T Тельца. Остаток диска, имеющий массу порядка 10 масс Юпитера, постепенно образует планеты (рис. 2.1).
Древнейший известный твердый материал, попавший в руки ученых, — так называемые досолнечные зерна (presolar grains). Эти частицы микронных размеров, найденные внутри метеоритов, состоят из тугоплавких минералов — карбида кремния, алмаза, оксидов алюминия и титана, оливина и пироксена. Досолнечные зерна отличаются по изотопному составу от остального вещества Солнечной системы. Например, они часто сильно обогащены тяжелым изотопом кальция 44Са. Этот изотоп получается из радиоактивного титана 44Ti с периодом полураспада 60 лет, который, в свою очередь, возникает в больших количествах при вспышках сверхновых. Следовательно, досолнечные зерна образовались в конце жизни различных звезд в процессе сброса их оболочек — как тихого (звездный ветер), так и взрывного (вспышки сверхновых).
Самые древние твердые тела Солнечной системы, кальций-алюминиевые включения, тоже входят в состав метеоритов, но они крупнее, до миллиметра в размере, и в их составе есть и менее тугоплавкие материалы. Возраст всех кальций-алюминиевых включений, определенный с высокой точностью уран-свинцовым методом, одинаков и составляет 4568 млн лет. Момент образования кальций-алюминиевых включений принимается за точку отсчета существования Солнечной системы (табл. 2.1).
Кальций-алюминиевые включения тоже несут в себе изотопные следы вспышек сверхновых в виде избытка 26Mg и 60Ni — продуктов распада радионуклидов 26Al и 60Fe с периодами полураспада 730 000 лет и 2,6 млн лет соответственно. Следовательно, образование Солнечной системы произошло вскоре после вспышки сверхновой в этом районе космоса. Ударная волна от вспышки сверхновой могла стать толчком, запустившим сжатие облака.
Пока не очень понятно, как соотносится и…