Тайна жизни. Как Розалинд Франклин, Джеймс Уотсон и Фрэнсис Крик открыли структуру ДНК

Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

Рекомендуем книги по теме

От атомов к древу. Введение в современную науку о жизни

Сергей Ястребов

Мальчик, который не переставал расти… и другие истории про гены и людей

Эдвин Кёрк

Евангелие от LUCA. В поисках общего предка всего живого

Максим Винарский

Воля и самоконтроль. Как гены и мозг мешают нам бороться с соблазнами

Ирина Якутенко

Памяти посвятившей себя науке М. Деборы Гордин Маркел (1 августа 1958 г. — 16 октября 1988 г.), жизнь которой трагически рано оборвал рак

[1]

Часть I

Пролог

Все древние летописи, как заметил один из наших блестящих умов, всего лишь ходячие побасенки.

Вольтер[2]1

Как мне представляется, лучше всем заинтересованным лицам оставить прошлое истории, тем более что я сам намерен ее написать.

Уинстон Черчилль2

[ 1 ]

Действующие лица

Каждому школьнику известно, что ДНК — очень длинное химическое послание, записанное четырехбуквенным алфавитом… Теперь, когда ответ известен, понятно, в чем были ошибки… Путь к успеху в теоретической биологии чреват ловушками.

Фрэнсис Крик[3]1

28 февраля 1953 г. вскоре после того, как церковные колокола пробили полдень, двое мужчин кубарем скатились по лестнице Кавендишской лаборатории Кембриджского университета. Их переполняло ликование. Они только что совершили открытие всей своей жизни и жаждали рассказать о нем коллегам. Первым, бухнув подошвами об пол, достиг первого этажа Джеймс Уотсон, 25-летний американский биолог из Чикаго. От него на шаг отстал спускавшийся более осторожно Фрэнсис Крик, 37-летний английский физик из Уэстон-Фавелла близ Нортгемптона2.

Если бы это был эпизод из голливудского кино, то сначала показали бы Кембриджский университет с высоты птичьего полета, потом виды уютных английских садов Клэр-колледжа, в котором когда-то квартировал Уотсон. Затем камера скользила бы вдоль мелководной реки Кем, на мгновение выхватив фигуру человека на узкой плоскодонке, плывущей вниз по течению. Дальше показались бы великолепные прибрежные луга возле Тринити-колледжа и Королевского колледжа, и взгляд последовал бы вверх, к бесчисленным каменным шпилям.

Эти двое, мчащиеся что есть духу, так что галстуки съехали набок и полы пиджаков колотятся за спиной, выскакивают из готического портала Кавендишской лаборатории. Вот они несутся по Фри-Скул-лейн — короткой извилистой дорожке, выложенной истертыми и неровными каменными плитами. Миновав плотную группу старых деревьев, затеняющих приходскую церковь Св. Бенедикта, квадратная башня которой была выстроена в 1033 г., то есть еще в англосаксонский период, парочка обегает кованую ограду, у которой скопились велосипеды — основное средство передвижения для многих кембриджских студентов, аспирантов и профессоров.

Целью этого забега тем ветреным, но необыкновенно солнечным для февраля днем был паб Eagle3 на северной стороне Бенет-стрит — всего в сотне шагов от Кавендишской лаборатории. Это заведение, впервые распахнувшее двери в 1667 г. и называвшееся тогда Eagle and Child, привлекало посетителей главным образом тем, что пиво стоило пенни за три галлона[4]. Именно там любили промочить горло кембриджские преподаватели и студенты. Во время Второй мировой войны паб Eagle оказался неофициальной штаб-квартирой подразделений Королевских военно-воздушных сил Великобритании (ВВС), расквартированных поблизости. Стены одного из его залов покрыты написанными, выжженными и выцарапанными именами, рисунками, номерами эскадрилий и прочими граффити. Некий безвестный пилот умудрился изобразить на потолке соблазнительную полуголую женщину.

Шесть дней в неделю Уотсон и Крик перекусывали в уютном закутке между залом для служащих ВВС и баром из дуба, уставленным разноцветными бутылками пива всевозможных видов и сортов. Когда 28 февраля они сюда прибежали, Eagle был битком набит преподавателями и научными сотрудниками, поглощавшими сосиски с пюре, рыбу с жареным картофелем, пирог с говядиной и почками и прочие блюда обеденного меню. За едой и питьем блистательные умы Кембриджа громко обсуждали едва ли не все стороны человеческого существования.

Джеймс и Фрэнсис явились туда, чтобы поднять еще больше шума. Они только что открыли структуру дезоксирибонуклеиновой кислоты (ДНК). Фрэнсис как на крыльях влетел в паб, крича во все горло: «Мы раскрыли тайну жизни!»[5]4 Так описывал случившееся Уотсон, хотя Крик всю жизнь вежливо, но твердо отрицал, что заявлял подобное в тот судьбоносный день5.

Подобное бахвальство не одобрялось кембриджскими учеными, кодексу поведения которых Крик, впрочем, следовал далеко не всегда. Однако бесспорно, что в тот день Уотсон и Крик действительно раскрыли тайну жизни или, по крайней мере, ее главный биологический секрет. Установление структуры ДНК лежит в русле давно известной, но не утратившей своего значения максимы: в биологии, не зная строения или анатомии объекта, невозможно понять его функцию (и влиять на нее). Практически все достижения в современном понимании процесса передачи генетической информации основываются на эпохальном открытии структуры ДНК. Вряд ли кто не согласится с тем, что 28 февраля 1953 г. в истории науки — да, собственно говоря, и в истории человечества — словно зажегся свет. И после этого представления о наследственности, живом организме и жизни вообще не могли остаться прежними. Изменилось все, как будто исчезла вековая тьма6.

Открытие двойной спирали объяснило ключевую роль ДНК в процессе деления живой клетки на две новые, каждая из которых содержит копию родительской ДНК и обладает свойствами исходной клетки. Молекула ДНК построена из единиц, называемых нуклеотидами; каждый нуклеотид состоит из остатка сахара, соединенного через фосфатную группу (включает атом фосфора и четыре связанных с ним атома кислорода) с азотистым основанием. Азотистые основания в ДНК имеются двух типов: пуриновые (гуанин и аденин) и пиримидиновые (цитозин и тимин). Пуриновые основания одной цепи двойной спирали соединены водородными связями с противолежащими пиримидиновыми основаниями другой цепи, как ступеньки винтовой лестницы, перила которой образованы чередующимися сахарными остатками и фосфатными группами. В обеих цепях этой длинной молекулы ДНК пуриновые и пиримидиновые основания расположены не случайным образом, а в определенной последовательности, которая и содержит информацию о свойствах клетки.

Порядок расположения миллиардов нуклеотидов, соединенных в молекулы ДНК, и несет то, что называют тайной жизни, — генетический код. В конечном счете открытие Уотсона и Крика привело к формуле, которая сыграла в генетике ту же роль, что формула E = mc2 в физике: ДНК —> РНК —> белок. Ее Крик впоследствии назвал «центральной догмой молекулярной биологии».

На протяжении первой половины XX столетия в науке царили физики7. Они потрясли мир важными открытиями — атома, рентгеновского излучения и радиоактивности, фотоэлектрического эффекта, специальной и общей теории относительности, а тех, кто занимался количественными характеристиками подобных фундаментальных физических явлений, — еще и принципом неопределенности. Эти достижения радикально изменили представления о природе и придали науке такую роль в обществе, о которой в 1900-е гг. и помыслить было невозможно8.

Знаковым триумфом современной физики стала квантовая механика. Ее создали (и переработали, включив другие теории) датчанин Нильс Бор, австриец Эрвин Шрёдингер, немцы Макс Планк, Альберт Эйнштейн и Вернер фон Гейзенберг, уроженец Будапешта Лео Силард и многие другие. Эти ученые стремились объяснить физический мир, проникнув в его структуру на недоступную человеческому глазу глубину: внутрь атома и его компонентов — электрона, нейтрона, протона, а также открытых позднее других субатомных частиц, в частности кварков и бозона Хиггса. Они предложили ряд головокружительных математических абстракций, чтобы объяснять и даже предсказывать явления, изучаемые естественными науками. Поэтому на весь мир прославились именно физики-теоретики, а не безымянные труженики, добывавшие экспериментальные данные, необходимые для доказательства их блестящих теорий9.

В годы Второй мировой войны физики стран-союзниц вместе с математиками, химиками и инженерами сконструировали радиолокатор, гидролокатор, реактивный двигатель, развили химию и производство пластиков и пластмасс, значительно развили электронику и использование электромагнетизма, взломали коды немецкой шифровальной машины «Энигма» с помощью совершенно новой технологии10. Наконец, американские физики, работавшие в Лос-Аламосе (штат Нью-Мексико), Окридже (штат Теннесси) и Хэнфорде (штат Вашингтон), разработали атомную бомбу. Увы, ее первое применение в военных целях было чудовищным: оно уничтожило японские города Хиросиму и Нагасаки.

Осознав ужасный результат своей работы, многие из этих ученых поклялись никогда больше не заниматься оружием. Фокус научных исследований сместился к изучению механизмов жизни на уровне молекул, из которых состоят кровь, мышцы, нейроны, прочие ткани, органы и клетки тела. По воспоминаниям Джеймса Уотсона, в научных кругах после Второй мировой войны единственным предметом всеобщего восхищения была физика. Революция в химии — следствие революции в физике. Революция в биологии, также берущая начало в физике, развернулась лишь после открытия структуры ДНК11.

В 1950 г. никто, включая сильнейшие научные умы планеты, не знал, как конкретно передается из поколения в поколение необходимая информация об организме и его признаках, иными словами — как работают гены. Где располагаются посредники в передаче информации: в цитоплазме клетки или в ее ядре? Как взаимодействуют эти две совершенно разные части клетки — цитоплазма и ядро? Существует ли генетический код и, если существует, как кодируется столь разнородная информация? Определяют ли деление клетки белки с их невероятно сложными молекулами, состоящими из соединенных в длинные цепочки аминокислотных остатков, из которых в принципе возможно создать практически бесконечное число комбинаций? Или главную роль играет малоизученная ДНК? Если верно последнее, то каким образом ДНК переносит сложную генетическую информацию, ведь она содержит лишь четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин)? Не слишком ли у нее бедный, примитивный химический язык, чтобы служить Розеттским камнем для разгадывания тайны жизни?

Пожалуй, самый наглядный пример непростого пути от физики к биологии — Эрвин Шрёдингер. Из его достижений наиболее известно уравнение, позволяющее рассчитать волновую функцию системы, а также мысленный эксперимент под названием «кот Шрёдингера»12, выразивший его растущее недовольство квантовой теорией. В 1933 г. он получил[6] Нобелевскую премию по физике за открытие новых продуктивных форм атомной энергии13. Шрёдингер вошел в анналы биологии в 1944 г., когда увидела свет его небольшая книга «Что такое жизнь с точки зрения физики»[7] (What Is Life?: The Physical Aspect of the Living Cell) , основанная на цикле лекций, прочитанных им в 1943 г. в Тринити-колледже Дублина14. Никакая другая публикация не может сравниться с ней по колоссальному влиянию на понимание молекулярной биологии. И Джеймс Уотсон, и Фрэнсис Крик, и Морис Уилкинс отмечали, что книга Шрёдингера произвела на них ошеломляющее впечатление и оказала громадное влияние на их научное мировоззрение.

В этой книге описана работа американского биофизика немецкого происхождения Макса Дельбрюка и поставлены четыре ключевых вопроса: 1. Что такое ген? 2. Является ли ген наименьшей единицей передачи наследственной информации? 3. Из каких молекул и атомов состоят гены? 4. Как родительские признаки передаются потомству и далее из поколения в поколение? В качестве ответа Шрёдингер постулировал существование апериодического кристалла или твердого тела, гена или, может быть, целого хромосомного волокна, состоящего из молекул, повторяющихся или выстроенных в определенным образом организованную последовательность15. Далее он предположил, что в химических связях этих генов заключена генетическая информация, управляющая жизнью, болезнями и репродукцией. Эта направленность мысли убедила молодого Джеймса Уотсона (и многих других ученых), что принципиально важно установить точное взаимное расположение атомов, из которых состоит ген, — не только многочисленные химические связи, но и их конкретную пространственную организацию.

С 1947 г. Совет по медицинским исследованиям Великобритании выделял физическому факультету Королевского колледжа Лондонского университета 22 000 фунтов на биофизические эксперименты по изучению живых клеток, их компонентов и продуктов жизнедеятельности. Одной из задач, на которые предоставлялся этот грант, было определение структуры ДНК и ее роли в жизни клетки16. В Королевском колледже Лондонского университета было самое лучшее оборудование, лучшие образцы ДНК и сотрудники, способные решить эту задачу старым добрым научным подходом — путем постепенного накопления данных. К сожалению, их работе препятствовали непростые отношения двух главных исследователей: нервозного, надменного Мориса Уилкинса и злой на язык, придирчивой Розалинд Франклин. Любое их взаимодействие портила цепная реакция споров и раздоров из-за гендерных и культурных различий, стремления к доминированию и шаткой расстановки сил, что тормозило исследовательскую работу.

Между тем в Кавендишской лаборатории Кембриджского университета случайно возник тандем Джеймса Уотсона и Фрэнсиса Крика. Оба были способны договорить фразу собеседника еще до того, как она прозвучала, и их руководители, которым надоела такая манера дискутировать, посадили их вместе в отдельный кабинет. Кавендишская лаборатория тоже получила щедрый грант Совета по медицинским исследованиям, но ее отделу биофизических исследований поручено было выяснять строение гемоглобина — содержащегося в эритроцитах белка, который связывает и переносит кислород. У Уотсона не лежала душа к этой работе, и он нарушил правила, принятые в британском научном сообществе, согласно которым нельзя посягать на тему исследований, порученную другому подразделению. Дерзкий уроженец Среднего Запада США, одержимый желанием раскрыть тайну ДНК, был готов добиться успеха, чего бы это ни стоило. Он пренебрег джентльменским кодексом академической среды еще и тем, что использовал экспериментальные данные, полученные Розалинд Франклин, без ее ведома.

За океаном, в США, в Калифорнийском технологическом институте, структурой биологических макромолекул занимался Лайнус Полинг, считавшийся величайшим химиком в мире. В 1951 г., располагая полным доверием и поддержкой Фонда Рокфеллера, группа Полинга обошла Кавендишскую лабораторию, открыв спиральную конфигурацию в структуре белков17. В 1953 г. роли переменились: Полинг выдвинул гипотезу о структуре ДНК, оказавшуюся ошибочной, а в Кембридже вышли на верную дорогу.

Через пятнадцать лет после открытия структуры ДНК Уотсон рассказал об этом в неотразимо убедительной книге воспоминаний. Читателю может показаться, что она написана им еще в молодости, но Уотсон работал над книгой, будучи уже почти 40-летним профессором в Гарвардском университете. И в 1968 г. вышел в свет эпохальный бестселлер «Двойная спираль. Воспоминания об открытии структуры ДНК»18. Как описание научного расследования «Двойная спираль» — шедевр и гарантия того, что в дальнейшем в любой истории о ДНК голос Уотсона окажется самым громким. А если вернуться к аналогии с Голливудом, то сюжет книги Уотсона можно резюмировать, скажем, так: парни знакомятся с девушкой, терпят от нее унижение, твердо решают победить — и побеждают.

16 мая 2016 г. светила молекулярной биологии собрались в Колд-Спринг-Харборской лаборатории на мероприятии под названием «Чествование Фрэнсиса Крика», которое проводилось в связи со столетием со дня его рождения (он умер в возрасте 88 лет 28 июня 2004 г.). В этом научном комплексе, спрятавшемся среди деревьев на северном побережье Лонг-Айленда, исследовали генетические аспекты жизни и болезней. Самое высокое здешнее здание — часовая башня из красного кирпича и терракоты с винтовой лестницей. На каждой из четырех стен башни прикреплены таблички из зеленого коннемарского мрамора с буквами a, t, g, c, обозначающими азотистые основания ДНК — аденин, тимин, гуанин и цитозин. Это, в сущности, памятник Уотсону. Правда, он был недоволен тем, что строители использовали строчные буквы вместо прописных, как принято делать после опубликования статьи Уотсона и Крика с описанием их открытия в журнале Nature за 25 апреля 1953 г.

Открыл встречу в Колд-Спринг-Харборе, устроенную в красивой новой аудитории, 88-летний Джеймс Уотсон, к которому, как к «королю Джеймсу», было приковано внимание публики. Колд-Спринг-Харборская лаборатория была его никем не оспариваемым научным царством.

Уотсон начал речь с истории о пабе Eagle, повторив то, что рассказано в знаменитой книге «Двойная спираль». Однако на сей раз он признался, что для драматического эффекта выдумал восклицание Фрэнсиса Крика о разгадке тайны жизни19. Через два года летом, сидя в тени часовой башни с ее «двойной спиралью» лестницы, он пояснил: «Фрэнсис мог бы сказать именно так и сказал бы. То, что я написал, было совершенно в его духе, и любой согласится с этим»20.

Но первое заявление об одном из величайших научных достижений XX в. было сделано не в той форме, в которой его представляют по книге. Этот мифический эпизод, как и многие другие детали эпохального поиска структуры ДНК, долго приукрашивался, видоизменялся и шлифовался. В ворохе воспоминаний, биографий и журналистских пересказов история открытия ДНК преподносится с точки зрения то одного, то другого участника, так что к настоящему времени она уже превратилась в подобие фильма «Расёмон». Мнение дилетанта во многом зависит от того, чью версию событий он узнал последней.

Джеймс Уотсон часто отмахивался от своих хулителей, саркастически замечая: «Есть лишь молекулы. Все остальное — социология»21. Однако череда поступков человека редко следует в столь ограниченном русле. В молодые годы этими увлеченными блестящими учеными сделано множество шагов: какие-то из них в свое время казались ключевыми, тогда как другие — преходящими или несущественными, однако были признаны важными много лет спустя. Стечения обстоятельств становились определяющими, а обстоятельства, долгое время бывшие в центре внимания, в конечном счете не имели значения. На этом пути случайно сходились нужные люди в нужное время и поднималась радостная шумиха или же попадались не те люди не в то время и воцарялось уныние. Были вспышки побед и бесплодные периоды неудач, проявления дружбы и мелкие распри. Кроме того, вокруг открытия строения ДНК прослеживается цепь событий, движимых не самыми благовидными поступками ее участников, боровшихся за первенство22. Погребенное под напластованиями толкований, объяснений и заблуждений установление молекулярной структуры ДНК — один из самых запутанных сюжетов в истории науки.

Пора наконец рассказать, как все было на самом деле.

[ 2 ]

Монах и биохимик

Законы, управляющие наследственностью, по большей части неизвестны. Никто не может сказать, почему одна и та же особенность у различных особей одного и того же вида или у различных видов иногда наследуется, а иногда нет; почему у ребенка часто наблюдается возврат к некоторым признакам деда, бабки или еще более отдаленных предков; почему какая-нибудь особенность часто передается от одного пола обоим или только одному и чаще всего, хотя и не исключительно, тому же полу[8].

Чарльз Дарвин, 1859 г.1

Все началось в аббатстве, воздвигнутом на вершине холма в моравском городе Брюнн (теперь Брно в Чешской Республике). В 1352 г. монахи-августинцы выстроили для монастыря оштукатуренное каменное двухэтажное здание в форме буквы Г, увенчанное остроконечной крышей с оранжевой глиняной черепицей. В центре первого этажа расположились трапезная и библиотека, над ними находился длинный открытый дормиторий для братии. Эти помещения выходили окнами одной стороны на слияние рек Свитавы и Свратки, а другой — на готическую базилику Вознесения Девы Марии, построенную из красного кирпича. Тогдашние власти назвали монастырь аббатством Св. Фомы в честь апостола, который сначала усомнился в воскресении Иисуса Христа (отсюда выражение «Фома неверующий»).

В залах и галереях здания царила необыкновенная тишина, нарушаемая лишь чириканьем птиц, которых держали на территории аббатства в клетках из проволочной сетки для защиты от хищников. Из расположенной по соседству пивоварни «Старобрно», утолявшей жажду местных жителей с 1325 г., несло ароматами кипящего сусла, хмеля и дробины. В углу центрального двора поместился тщательно возделываемый садик, окруженный ухоженным газоном. Здесь монах по имени Грегор Мендель выращивал помидоры, фасоль и огурцы2. Его главной гордостью был горох, разросшиеся стебли которого всевозможных форм, размеров и оттенков образовывали живое подобие решетки Пеннета3.

Иоганн Мендель (имя Грегор он принял, когда вступил в орден августинцев) родился в 1822 г. в семье фермера, которая возделывала участок земли возле границы Моравии и Силезии. В детстве Менделю нравилось работать в саду и ухаживать за пчелами. Он сменил несколько школ в своем районе и в 1840 г. поступил в университет в близлежащем Оломоуце. Через три года ему пришлось бросить учение, потому что денег было мало, а плата оказалась высокой.

В 1843 г. Мендель с намерением продолжить учебу оставил мирские блага и начал монашескую жизнь в аббатстве Святого Фомы. В ночных молитвах он благодарил Бога за то, что не нужно больше ломать голову над тем, как свести концы с концами или выплатить семейные долги. У него была удобная кровать и достаточно пищи. Аббатство в ту пору было интеллектуальным центром Брюнна, и Мендель в 1851 г. убедил настоятеля найти средства оплатить его обучение в Венском университете4. Там Мендель преуспел в изучении физики, агрономии, биологии и в исследованиях врожденных признаков растений и овец. Обладавшего выдающимися умственными способностями Менделя можно уподобить не Фоме неверующему, а подвижнику и провидцу святому Антонию.

В 1853 г., когда брат Грегор вернулся в Брюнн, настоятель поручил ему преподавать физику в местной школе, хотя тот дважды завалил устный экзамен на получение диплома учителя. Менделю больше нравилось ухаживать за садом, чем выполнять обязанности в приходе. На крохотном клочке земли он взрастил современное учение о наследственности. Ежедневно Мендель тщательно записывал свои наблюдения за семью изменчивыми признаками в последовательных поколениях самоопыляющегося гороха: высотой растений, формой и окраской стручков, формой и окраской горошин, расположением и окраской цветков.

Вскоре после того, как Мендель начал скрещивать высокорослые растения с низкорослыми, он заметил, что все растения в следующем поколении вырастают высокими. Он назвал высокорослость доминантным признаком, а низкорослость — рецессивным. Но в поколении, полученном от гибридных растений, наблюдались оба признака: имелись и высокорослые экземпляры, и низкорослые в соотношении 3:1. Мендель обнаружил это устойчивое соотношение также для других доминантных и рецессивных признаков гороха. В итоге он вывел математическую формулу, предсказывающую проявление этих признаков в последующих поколениях и скрещиваниях5. Он полагал, что наблюдаемые им явления обусловлены некими невидимыми факторами — ныне известно, что это гены.

Брат Грегор рассказал о своих исследованиях на двух вечерних собраниях брюннского Общества естествознания 8 февраля и 8 марта 1865 г. Сегодня на научном семинаре странно было бы увидеть монаха в черной шерстяной рясе до щиколоток и с островерхим капюшоном, свисающим на спину. А тогда Общество естествознания нередко посещали обитатели аббатства, приходили туда также горожане-интеллектуалы и даже интересующиеся фермеры из соседних сел. У Менделя были лишь доска и мел, чтобы представить свои сложные формулы; делая доклад, он почти шептал — сказывались долгие годы монастырского молчания, — но тем не менее и впечатлил, и озадачил сорок с лишним присутствующих.

Позднее в том же году Мендель опубликовал свои сообщения в Verhandlungen des naturforschenden Vereines in Brünn — печатном издании Общества естествознания. К сожалению, оно не пользовалось широкой известностью, и открытия Менделя не всколыхнули мир. Их по́зднее признание часто объясняют малозаметностью публикации, но дело не только в этом. Идея Менделя о дискретности наследственности — о передаче потомству предсказуемых элементов — противоречила господствовавшему в ту эпоху представлению о функционировании и размножении живых организмов. Считалось, что деятельность органов и даже особенности личности ребенка определяются соотношением четырех жидкостей тела: крови, слизи, желтой желчи и черной желчи6. Эта многовековая теория была совершенно неверна, но, чтобы опровергнуть ее, понадобилось еще несколько десятилетий научного поиска. Кроме того, математические методы, к которым прибег Мендель для анализа полученных данных, были чужды мышлению биологов и натуралистов того времени, многим было еще трудно хотя бы постичь теорию Дарвина, если уж не принять; они привыкли лишь собирать, описывать и классифицировать различные виды исходя из морфологических признаков7.

К сожалению, последние семнадцать лет жизни Мендель являлся настоятелем аббатства Св. Фомы и тратил время на многочисленные служебные обязанности, увязая в спорах о налоговых обязательствах монастыря с бюрократическим аппаратом Австро-Венгерской империи. Он умер в 1884 г. в возрасте 62 лет от хронической болезни почек. Лишь через шестнадцать лет после его смерти, в 1900 г., голландский ботаник Хуго де Фриз, австрийский агроном Эрих фон Чермак-Зейзенегг, немецкий ботаник Карл Корренс и американский специалист по экономике сельского хозяйства Уильям Спиллман независимо друг от друга экспериментировали со скрещиванием и получили данные, сходные с менделевскими, а также обнаружили затерявшуюся в архивной пыли статью Менделя8. Только самые одержимые темой наследственности помнят сегодня этих четырех ученых, потому что они благородно (и честно) признали первенство Грегора Менделя. В последние годы высказывалось предположение, что Мендель выдумал свои данные, потому что математические соотношения, которые он привел в своей статье, слишком точны, чтобы быть достаточно вероятными со статистической точки зрения. Однако множество биологов и специалистов по биостатистике решительно встали на защиту Менделя9. Теперь превалирует мнение, что данные Менделя вполне корректны и он был честен в описании своих опытов.

Повторное открытие законов Менделя, управляющих передачей простых рецессивных и доминантных признаков, заложило основу современной генетики. С тех пор он обрел заслуженное бессмертие как отец классической генетики. Но в этой системе понятий есть серьезная проблема: большинство наследуемых признаков не являются простыми, будучи обусловлены взаимодействием нескольких генов, экспрессия которых может также изменяться под влиянием средовых, социальных и иных факторов.

Через три года после выхода статьи Менделя в свет, осенью 1868 г., в Тюбингене Фридрих Мишер собирал гной с бинтов хирургических больных. Новоиспеченный швейцарский врач (он получил степень доктора медицины в Базеле в 1868 г.), Мишер происходил из почтенной и состоятельной семьи. Его отец, Иоганн Фридрих Мишер, был профессором физиологии, а дядя, Вильгельм Гис, — профессором анатомии в Базельском университете; Гис сделал немало открытий в нейробиологии, эмбриологии и гистологии10.

Мишер с детства плохо слышал из-за хронической инфекции в сосцевидном отростке. Это мешало ему сначала в годы учебы, затем при работе с больными, осложняя общение с ними. Отец и дядя Мишера сочли, что ему лучше не приступать сразу к клинической практике. Благодаря своим связям они устроили его в лабораторию профессора Феликса Гоппе-Зейлера в Тюбингенском университете. Гоппе-Зейлер — один из основателей современной биохимии; помимо прочего, он открыл функцию красных кровяных телец (эритроцитов), которая состоит в переносе кислорода белком гемоглобином, и роль железа в этом процессе.

Лаборатория Гоппе-Зейлера располагалась в подвальных помещениях замка Хоэнтюбинген. Она представляла собой ряд тесных помещений с глубоко утопленными в стены арочными окнами, выходившими на реку Неккар и долину реки Аммер. Мишер полюбил это место, где под руководством Гоппе-Зейлера занялся изучением состава нейтрофилов и других белых кровяных телец (лейкоцитов), циркулирующих в кровяном русле и нейтрализующих чужеродные клетки и частицы, тем самым препятствуя инфекциям. Лейкоциты были выбраны потому, что они содержатся в крови, а не в более плотных тканях организма, и, следовательно, их легче выделить и очистить. Кроме того, у этих клеток относительно крупное ядро, хорошо видное в световой микроскоп, а ядро — это, можно сказать, центр управления клетки.

Оказалось, что лучше всего получать лейкоциты из серо-зеленых, пропитанных гноем бинтов с ран хирургических пациентов. В середине XIX в. хирурги считали, что гной как побочный продукт заживления операционной раны имеет доброкачественный эффект и чем больше образуется гноя, тем выше шансы на выздоровление. Как теперь известно, нагноение чаще всего возникает из-за нечистых рук и инструментов, а избыточное выделение гноя приводит к послеоперационной инфекции. Нередко из-за «доброкачественного» гноя инфекция распространялась с кровотоком по всему организму и развивалось смертельно опасное состояние — сепсис.

Как часто случается в научном поиске, Мишеру сыграло на руку появление новой технологии, разработанной другим исследователем, а именно Виктором фон Брунсом, возглавлявшим хирургическую клинику Тюбингенского университета. Профессор фон Брунс придумал хлопковый тканый материал с высокими абсорбирующими свойствами, которому дал название «ватный хлопок» (теперь он называется марлей). Вместе с послеоперационными инфекциями этот новый перевязочный материал, впитывающий жидкости как губка, ежедневно обеспечивал Мишера гноем11.

Со временем Мишер нашел наилучший способ отделять нежные лейкоциты от жидкой части гноя из перевязочного материала, не повреждая и не убивая их, что было непростой задачей. К счастью, с его, как говорится, легкой руки появился метод, который позволил получить в осажденном виде ранее не описанное вещество с высоким содержанием фосфора, проявлявшее свойства кислоты. Мишер установил, что это вещество содержится только в ядре клетки, и назвал его нуклеином (от латинского nucleus — «ядро»). В наше время обнаруженное Мишером вещество называется дезоксирибонуклеиновой кислотой, сокращенно ДНК12. Зачастую ошибочно говорят, будто Уотсон и Крик открыли ДНК. В действительности они открыли молекулярную структуру вещества, которое Фридрих Мишер выделил и охарактеризовал химически на восемьдесят четыре года раньше — в 1869 г.

В 1871 г. Мишер перебрался из Тюбингена в Лейпциг, где стал работать под руководством прославленного физиолога Карла Людвига13. В том же году он подготовил статью о своих исследованиях нуклеина, и после тщательной проверки результатов, отличавшихся высокой воспроизводимостью, Феликс Гоппе-Зейлер согласился опубликовать ее в престижном журнале Medicinisch-chemische Untersuchungen, редактором которого являлся. В редакционном предисловии к статье Мишера Гоппе-Зейлер авторитетно подтвердил научную новизну открытия нуклеина14.

В следующем году Мишер вернулся в родной Базель проходить хабилитацию — читать лекции и готовиться к занятию академической должности согласно процедуре, принятой для молодых врачей Германии, Австрии и Швейцарии в XIX в.15 В возрасте 28 лет он получил предложение возглавить кафедру физиологии и занять должность профессора в Базельском университете. Поскольку в этом учебном заведении высокие посты принадлежали его отцу и дяде, коллеги-завистники безосновательно жаловались на кумовство. Мишер, став блестящим исследователем, доказал, что они ошибаются.

Поскольку Базель раскинулся на берегах Рейна, одной из важнейших отраслей хозяйства в городе была ловля лосося. А сперматозоиды лосося легко выделить и очистить даже теми методами, которые были известны во времена Мишера. Кроме того, эти клетки имеют очень крупное ядро, так что из них получается много нуклеина, пригодного для исследований. И Мишер взялся за рыбалку, чтобы обеспечить себе неиссякаемый источник молок лосося. Химический анализ тогда был очень трудоемким и долгим, к тому же поначалу образцы нуклеина бывали загрязнены белками и входящей в их состав серой, но в конце концов Мишер установил, что нуклеин состоит из углерода, фосфора, водорода, кислорода и азота.

В 1874 г. Мишер опубликовал сообщение о том, что ядра клеток различных видов позвоночных имеют много общего, но и несколько различаются. В частности, в этой статье есть сформулированное довольно сдержанно, но по сути сенсационное предположение, что если конкретной причиной оплодотворения является индивидуальное вещество, то следует рассматривать в первую очередь нуклеин16. Однако Мишер не мог объяснить, каким образом столь сложным процессом, как репродукция, может управлять единственное химическое соединение с таким ограниченным разнообразием, и сделал вывод, что, как он выразился, «не существует конкретного вещества, определяющего оплодотворение»17.

Как и Грегор Мендель, Мишер был вынужден заниматься административными делами, теряя на них время, которое лучше было бы посвятить размышлениям. Он умер от туберкулеза в 1895 г. на 52-м году жизни. В его честь назван Институт медико-биологических исследований Базельского университета. Однако за пределами Базеля лишь немногие помнят имя и труды Мишера. Прошло больше полувека, прежде чем удалось выяснить функции и роль ДНК. К сожалению, до этого в академических кругах понимание природы наследственности было далеко от истины.

[ 3 ]

До двойной спирали

С конца 1880-х гг. и особенно в первые три десятилетия XX в. многие белые мужчины-англосаксы из высших слоев общества (а также их жены и дети) весьма беспокоились о будущем генофонде своего народа1. Их страхи опирались на псевдонаучную схему, предложенную в 1883 г. британским натуралистом Фрэнсисом Гальтоном, который приходился двоюродным братом Чарльзу Дарвину. Гальтон предложил концепцию, названную им евгеникой (от греческого корня εύγενής — «хорошего рода, благородный от рождения»), и план улучшения здоровья населения, заключавшийся в том, чтобы предоставить более годным расам больше возможностей быстро достичь численного превосходства над менее годными2. Евгеника со скоростью лесного пожара распространилась среди белых интеллектуалов Европы, проникнув и в Америку.

В Соединенных Штатах Америки в 1900–1920 гг., когда царил прогрессивизм, поколение реформаторов стремилось противостоять актуальным социальным проблемам, в том числе положению городской бедноты, неграмотности, ассимиляции огромного множества мигрантов, прибывающих на берега Северо-Американского континента, а также демографическим проблемам, включая эпидемии, высокую детскую смертность и прирост населения. Эти реформаторы часто прибегали к ошибочным положениям евгеники применительно к людям, которых считали нежелательными: к умственно неполноценным (врачи и психологи обозначали их терминами «имбецилы», «идиоты» и «дебилы»), слепым, глухим, психически больным, инвалидам, эпилептикам, сиротам, матерям-одиночкам, представителям коренных народов Америки, афроамериканцам, иммигрантам, обитателям городских трущоб, неимущим жителям Аппалачей и ко множеству других «аутсайдеров». По утверждению прогрессивистов, все эти низшие группы населения представляли экзистенциальную угрозу экономическому, политическому и нравственному здоровью американского общества.

Евгеника дала американским властным структурам авторитетную наукообразную основу для расовых предрассудков в отношении тех, кого они считали опасными. Решение проблем нашли в том, чтобы изолировать нежелательных лиц, отгораживаться от них и не позволять им загрязнять господствующую «высшую расу» — урожденных белых американцев3. «Высших» с точки зрения евгеники, а именно белых англосаксов-протестантов, поощряли к размножению — этот подход получил название позитивная евгеника. Людям, которые считались носителями худших, «низших» генов, то есть практически всем остальным, активно препятствовали в продолжении рода мерами негативной евгеники, например государственными законами о стерилизации умственно отсталых, ограничениями на заключение межрасовых и других смешанных браков, обязательным анализом крови на венерические заболевания для получения разрешения на брак, методами контроля рождаемости и строгими нормами права на усыновление. К еще более угрожающей социальной политике вели призывы местных уроженцев к ограничению въезда иммигрантов, рассматриваемых ими как неспособных к ассимиляции. Используя евгеническую пропаганду для создания доказательной базы, Конгресс США принял в 1924 г. закон, ограничивающий въезд иностранцев на сорок с лишним лет. Эта политика обрекла на смерть миллионы евреев в Германии в Восточной Европе, лишив их возможности спастись от гитлеровских зверств путем эмиграции в Соединенные Штаты4.

Эпицентром американского евгенического движения были Станция экспериментальной эволюции и Бюро регистрации евгенических исследований (Eugenics Record Office, ERO) в Колд-Спринг-Харбор на Лонг-Айленде, которым руководил Чарльз Бенедикт Давенпорт, учившийся в Гарвардском университете и принятый в престижную Национальную академию наук США5. ERO было основано в 1910 г. на средства, завещанные Мэри Гарриман — женой железнодорожного магната Эдварда Генри Гарримана, а также на пожертвования Института Карнеги в Вашингтоне (округ Колумбия), Джона Рокфеллера — младшего и Джона Харви Келлога, который изобрел кукурузные хлопья и возглавлял санаторий в Баттл-Крик. Сейчас на месте ERO располагается Колд-Спринг-Харборская лаборатория, где долго директорствовал, расширяя и популяризируя ее, Джеймс Уотсон, пока из-за расистских высказываний его не освободили от этой должности6. Аспиранты Школы биологических наук Колд-Спринг-Харборской лаборатории до сих пор живут в мрачном викторианском общежитии, где когда-то обитал Чарльз Давенпорт.

В годы переоткрытия законов Менделя на основе его суждений развернулась масса дискуссий в обществе, которые в ERO были, как нигде, плодотворными и масштабными. А евгенисты распространили выводы, сделанные Менделем из опытов с растением гороха, на сложные социальные проблемы. Давенпорт объявил войну всем, кого считал угрозой чистоте генофонда нации7. В 1910 г. на собрании комитета по евгенике Американской ассоциации селекционеров он провозгласил: «Общество должно защищать себя; как оно требует лишить жизни убийцу, так может уничтожить и отвратительную гадину безнадежно дурной протоплазмы»8.

К тому времени Давенпорт руководил целой армией социальных работников, исполнителей полевых исследований, социологов и биологов, составлявших длинные сводки результатов изучения родословных, которые ошибочно трактовались с целью оценки наследственных основ различных национальных особенностей, например сладострастия и преступных наклонностей, характерных, по мнению Давенпорта, для итальянцев; неврастении, туберкулеза и деловой хватки, свойственных евреям; слабоумия, носившего повальный характер среди живущих в беспросветной нищете обитателей Аппалачей; склонности цыган и бомжей к бродяжничеству и даже врожденной любви к морю — талассофилии — у моряков.

Давенпорт считал, что евреи из Восточной Европы являли собой особенно серьезную угрозу для американского общества. 7 апреля 1925 г. Давенпорт заявил, обращаясь к своему другу Мадисону Гранту: «Наши предки переселили в Род-Айленд баптистов из Массачусетс-Бей, но у нас нет места, куда привезти евреев. Да, тогда жгли ведьм, но сейчас было бы против моральных норм сжечь сколько-нибудь существенную часть населения»9. Грант — консерватор, юрист, попечитель Американского музея естественной истории — тоже был видным сторонником евгеники. В 1916 г. он написал книгу «Конец великой расы» (The Passing of the Great Race), в которой продвигал меры против иммиграции, сегрегацию нежелательных рас и — поскольку считал, что множество американцев имеют «низкое» происхождение, — принудительную стерилизацию. Эта книга имела самые мрачные последствия в нацистской Германии. Адольф Гитлер называл главный труд Гранта «моя библия», когда разрабатывал печально известные программы расовой гигиены, уничтожившие шесть миллионов евреев и миллионы гомосексуалов, цыган, инв…