Отличная квантовая механика. Учебное пособие и Решения

Александр Львовский

Подробнее

Фрагмент книги «Отличная квантовая механика. Учебное пособие и Решения»

Книга содержит материал, который можно преподать студентам в рамках двухсеместрового курса квантовой механики. В главе 1 вводятся главные принципы и постулаты КМ, которые иллюстрируются кубитом поляризации фотона. Читатель, возможно, захочет изучать эту главу параллельно с приложением A, в котором разобраны основы линейной алгебры, необходимые в КМ, как показано в таблице ниже.

Глава 2 целиком посвящена запутанности, ее следствиям и приложениям. Сначала я ввожу пространство тензорных произведений математически, затем рассказываю о частичных квантовых измерениях, удаленном приготовлении состояния и парадоксе нелокальности (в формах Белла и Гринбергера — Хорна — Цайлингера), иллюстрируя теорию экспериментами с запутанными фотонами. Нелокальность, пожалуй, главный парадокс квантовой механики, и после него естественно обсудить механизм квантовых измерений, их естественный аналог (декогеренцию) и интерпретации квантовой механики. В разд. 2.4 мы выясняем, когда и почему квантовая система становится классической в ходе измерения и почему мы не встречаем гуляющих по городу кошек Шрёдингера. После этого я весьма подробно рассматриваю приложения запутанности, такие как квантовые вычисления, телепортация и повторители. При преподавании этого материала имеет смысл предложить двум или трем студентам сделать презентации по свежим исследованиям в данной области.

Главы 3 и 4 представляют собой в некоторой степени реверанс в сторону «общепринятой» вузовской квантовой механики частицы в потенциальном поле. Там нам придется иметь дело с гильбертовым пространством, базисом которого является континуум, поэтому глава 3 сопровождается кратким курсом по дельта-функциям Дирака и преобразованию Фурье (приложение Г). Я надеюсь, что после того, как студенты уже усвоят базовые положения КМ, они смогут воспринимать технические особенности гильбертовых пространств с непрерывными переменными, не теряя из виду физические принципы. Вводя системы с непрерывными переменными я объясню, как и почему при этом изменяются правила нормирования. Затем я приведу обычные примеры потенциальных ям, потенциальных барьеров, туннелирования и гармонического осциллятора. На этом, как мне представляется, должна завершиться программа первого семестра курса.

Читай без интернета

Любимые книги всегда доступны для чтения без доступа к интернету. Для этого всего лишь нужно загрузить книгу на устройство.

Мы в Telegram

@patephoneapp